Abstract

The working principle of an optical isolator made of two corrugated dielectric gratings is introduced. One grating acts as a polarizer, and the other acts as a quarter-wave plate used in conical incidence converting linearly polarized light into circularly polarized light. Global maxima of diffraction efficiency for surface-corrugated gratings with binary, sinusoidal, and pyramidal ridge shapes with dependence on the material index are identified. Regarding technological feasibility for use in the visible wavelength range, high-frequency gratings with a binary shape were realized. With these gratings, an extinction ratio of more than 40 dB for the polarizer is theoretically possible, and more than 20 dB was experimentally achieved. A good correlation between theoretically calculated efficiencies and birefringences based on rigorous methods and the experimental results is demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Noponen, J. Turunen, “Binary high-frequency-carrier diffractive optical elements: electromagnetic theory,” J. Opt. Soc. Am. A 11, 1097–1109 (1994).
    [CrossRef]
  2. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  3. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
    [CrossRef]
  4. L. Li, J. Chandezon, G. Granet, J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999).
    [CrossRef]
  5. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  6. P. Lalanne, D. Lemercier-Lalanne, “Depth dependence of the effective properties of subwavelength gratings,” J. Opt. Soc. Am. A 14, 450–458 (1997).
    [CrossRef]
  7. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
    [CrossRef]
  8. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
    [CrossRef]
  9. T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73, 1946–1948 (1998).
    [CrossRef]
  10. I. K. Hwang, S. H. Yun, B. Y. Kim, “All-fiber-optic nonreciprocal modulator,” Opt. Lett. 22, 507–509 (1997).
    [CrossRef] [PubMed]
  11. W. Glaser, Photonik für Ingenieure, 1st ed. (Verlag Technik, Berlin, 1997).
  12. P. Lalanne, J. Hazart, P. Chaval, E. Cambril, H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215–219 (1999).
    [CrossRef]
  13. D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, R. Steingüber, “High-frequency gratings for applications to DVD pickup systems,” J. Opt. A Pure Appl. Opt. 3, 164–173 (2001).
    [CrossRef]
  14. G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrated imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
    [CrossRef]
  15. E. Hecht, Optik (Addison-Wesley, Bonn, 1989).
  16. B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
    [CrossRef]
  17. S. Astilean, P. Lalanne, P. Chavel, E. Cambril, H. Launois, “High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm,” Opt. Lett. 23, 552–554 (1998).
    [CrossRef]
  18. T. Glaser, S. Schröter, R. Pöhlmann, H. Bartelt, H.-J. Fuchs, “High-efficiency binary phase-transmission-grating using e-beam lithography,” J. Mod. Opt. 45, 1487–1494 (1998).
    [CrossRef]
  19. A. Smakula, “Verfahren zur Erhöhung der Lichtdurchlässigkeit optischer Teile durch Erniedrigung des Brechungsexponenten an den Grenzflächen dieser optischen Teile,” German patentDE685767 (1November1935).
  20. C. G. Bernhard, “Strukturelle and funktionelle Adaption in einem visuellen System,” Endeavour 26, 79–84 (1967).
  21. C. W. Haggans, L. Li, R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
    [CrossRef]
  22. E.-B. Kley, H.-J. Fuchs, K. Zoellner, “A fabrication technique for high-aspect-ratio gratings,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, E. G. Johnson, eds., Proc. SPIE3879, 71–78.
  23. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16, 1143–1156 (1999).
    [CrossRef]
  24. T. Glaser, S. Schröter, H. Bartelt, “Beam switching with binary single-order diffractive gratings,” Opt. Lett. 23, 1933–1935 (1998).
    [CrossRef]
  25. T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, E. B. Kley, “Experimental realization of a diffractive optical isolator,” in Micromachining Technology for Micro-Optics, S. H. Lee, E. G. Johnson, eds., SPIE4179, 158–167.

2001

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, R. Steingüber, “High-frequency gratings for applications to DVD pickup systems,” J. Opt. A Pure Appl. Opt. 3, 164–173 (2001).
[CrossRef]

1999

1998

S. Astilean, P. Lalanne, P. Chavel, E. Cambril, H. Launois, “High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm,” Opt. Lett. 23, 552–554 (1998).
[CrossRef]

T. Glaser, S. Schröter, H. Bartelt, “Beam switching with binary single-order diffractive gratings,” Opt. Lett. 23, 1933–1935 (1998).
[CrossRef]

T. Glaser, S. Schröter, R. Pöhlmann, H. Bartelt, H.-J. Fuchs, “High-efficiency binary phase-transmission-grating using e-beam lithography,” J. Mod. Opt. 45, 1487–1494 (1998).
[CrossRef]

T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73, 1946–1948 (1998).
[CrossRef]

1997

1994

1993

1985

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

1983

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

1967

C. G. Bernhard, “Strukturelle and funktionelle Adaption in einem visuellen System,” Endeavour 26, 79–84 (1967).

1956

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Astilean, S.

Bartelt, H.

T. Glaser, S. Schröter, H. Bartelt, “Beam switching with binary single-order diffractive gratings,” Opt. Lett. 23, 1933–1935 (1998).
[CrossRef]

T. Glaser, S. Schröter, R. Pöhlmann, H. Bartelt, H.-J. Fuchs, “High-efficiency binary phase-transmission-grating using e-beam lithography,” J. Mod. Opt. 45, 1487–1494 (1998).
[CrossRef]

T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, E. B. Kley, “Experimental realization of a diffractive optical isolator,” in Micromachining Technology for Micro-Optics, S. H. Lee, E. G. Johnson, eds., SPIE4179, 158–167.

Bernhard, C. G.

C. G. Bernhard, “Strukturelle and funktionelle Adaption in einem visuellen System,” Endeavour 26, 79–84 (1967).

Cambril, E.

Chandezon, J.

Chaval, P.

P. Lalanne, J. Hazart, P. Chaval, E. Cambril, H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215–219 (1999).
[CrossRef]

Chavel, P.

Deguzman, P. C.

Dias, D.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, R. Steingüber, “High-frequency gratings for applications to DVD pickup systems,” J. Opt. A Pure Appl. Opt. 3, 164–173 (2001).
[CrossRef]

Ferstl, M.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, R. Steingüber, “High-frequency gratings for applications to DVD pickup systems,” J. Opt. A Pure Appl. Opt. 3, 164–173 (2001).
[CrossRef]

Flanders, D. C.

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

Fuchs, H.-J.

T. Glaser, S. Schröter, R. Pöhlmann, H. Bartelt, H.-J. Fuchs, “High-efficiency binary phase-transmission-grating using e-beam lithography,” J. Mod. Opt. 45, 1487–1494 (1998).
[CrossRef]

T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, E. B. Kley, “Experimental realization of a diffractive optical isolator,” in Micromachining Technology for Micro-Optics, S. H. Lee, E. G. Johnson, eds., SPIE4179, 158–167.

E.-B. Kley, H.-J. Fuchs, K. Zoellner, “A fabrication technique for high-aspect-ratio gratings,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, E. G. Johnson, eds., Proc. SPIE3879, 71–78.

Gaylord, T. K.

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Glaser, T.

T. Glaser, S. Schröter, H. Bartelt, “Beam switching with binary single-order diffractive gratings,” Opt. Lett. 23, 1933–1935 (1998).
[CrossRef]

T. Glaser, S. Schröter, R. Pöhlmann, H. Bartelt, H.-J. Fuchs, “High-efficiency binary phase-transmission-grating using e-beam lithography,” J. Mod. Opt. 45, 1487–1494 (1998).
[CrossRef]

T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, E. B. Kley, “Experimental realization of a diffractive optical isolator,” in Micromachining Technology for Micro-Optics, S. H. Lee, E. G. Johnson, eds., SPIE4179, 158–167.

Glaser, W.

W. Glaser, Photonik für Ingenieure, 1st ed. (Verlag Technik, Berlin, 1997).

Granet, G.

Haggans, C. W.

Haidner, H.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, R. Steingüber, “High-frequency gratings for applications to DVD pickup systems,” J. Opt. A Pure Appl. Opt. 3, 164–173 (2001).
[CrossRef]

Hazart, J.

P. Lalanne, J. Hazart, P. Chaval, E. Cambril, H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215–219 (1999).
[CrossRef]

Hecht, E.

E. Hecht, Optik (Addison-Wesley, Bonn, 1989).

Hwang, I. K.

Jones, M. W.

Kim, B. Y.

Kley, E. B.

T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, E. B. Kley, “Experimental realization of a diffractive optical isolator,” in Micromachining Technology for Micro-Optics, S. H. Lee, E. G. Johnson, eds., SPIE4179, 158–167.

Kley, E.-B.

B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

E.-B. Kley, H.-J. Fuchs, K. Zoellner, “A fabrication technique for high-aspect-ratio gratings,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, E. G. Johnson, eds., Proc. SPIE3879, 71–78.

Kostuk, R. K.

Lalanne, P.

Launois, H.

Lemercier-Lalanne, D.

Li, L.

Meier, J. T.

Moharam, M. G.

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Noponen, E.

Nordin, G. P.

Petit, R.

R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
[CrossRef]

Plumey, J.-P.

Pöhlmann, R.

T. Glaser, S. Schröter, R. Pöhlmann, H. Bartelt, H.-J. Fuchs, “High-efficiency binary phase-transmission-grating using e-beam lithography,” J. Mod. Opt. 45, 1487–1494 (1998).
[CrossRef]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Schnabel, B.

B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

Schröter, S.

T. Glaser, S. Schröter, R. Pöhlmann, H. Bartelt, H.-J. Fuchs, “High-efficiency binary phase-transmission-grating using e-beam lithography,” J. Mod. Opt. 45, 1487–1494 (1998).
[CrossRef]

T. Glaser, S. Schröter, H. Bartelt, “Beam switching with binary single-order diffractive gratings,” Opt. Lett. 23, 1933–1935 (1998).
[CrossRef]

T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, E. B. Kley, “Experimental realization of a diffractive optical isolator,” in Micromachining Technology for Micro-Optics, S. H. Lee, E. G. Johnson, eds., SPIE4179, 158–167.

Shintaku, T.

T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73, 1946–1948 (1998).
[CrossRef]

Smakula, A.

A. Smakula, “Verfahren zur Erhöhung der Lichtdurchlässigkeit optischer Teile durch Erniedrigung des Brechungsexponenten an den Grenzflächen dieser optischen Teile,” German patentDE685767 (1November1935).

Stankovic, S.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, R. Steingüber, “High-frequency gratings for applications to DVD pickup systems,” J. Opt. A Pure Appl. Opt. 3, 164–173 (2001).
[CrossRef]

Steingüber, R.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, R. Steingüber, “High-frequency gratings for applications to DVD pickup systems,” J. Opt. A Pure Appl. Opt. 3, 164–173 (2001).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Tschudi, T.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, R. Steingüber, “High-frequency gratings for applications to DVD pickup systems,” J. Opt. A Pure Appl. Opt. 3, 164–173 (2001).
[CrossRef]

Turunen, J.

Wang, L. L.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, R. Steingüber, “High-frequency gratings for applications to DVD pickup systems,” J. Opt. A Pure Appl. Opt. 3, 164–173 (2001).
[CrossRef]

Wyrowski, F.

B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

Yun, S. H.

Zoellner, K.

E.-B. Kley, H.-J. Fuchs, K. Zoellner, “A fabrication technique for high-aspect-ratio gratings,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, E. G. Johnson, eds., Proc. SPIE3879, 71–78.

Appl. Opt.

Appl. Phys. Lett.

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73, 1946–1948 (1998).
[CrossRef]

Endeavour

C. G. Bernhard, “Strukturelle and funktionelle Adaption in einem visuellen System,” Endeavour 26, 79–84 (1967).

J. Mod. Opt.

T. Glaser, S. Schröter, R. Pöhlmann, H. Bartelt, H.-J. Fuchs, “High-efficiency binary phase-transmission-grating using e-beam lithography,” J. Mod. Opt. 45, 1487–1494 (1998).
[CrossRef]

J. Opt. A Pure Appl. Opt.

P. Lalanne, J. Hazart, P. Chaval, E. Cambril, H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A Pure Appl. Opt. 1, 215–219 (1999).
[CrossRef]

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, R. Steingüber, “High-frequency gratings for applications to DVD pickup systems,” J. Opt. A Pure Appl. Opt. 3, 164–173 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

Opt. Lett.

Proc. IEEE

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Sov. Phys. JETP

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

W. Glaser, Photonik für Ingenieure, 1st ed. (Verlag Technik, Berlin, 1997).

E.-B. Kley, H.-J. Fuchs, K. Zoellner, “A fabrication technique for high-aspect-ratio gratings,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, E. G. Johnson, eds., Proc. SPIE3879, 71–78.

T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, E. B. Kley, “Experimental realization of a diffractive optical isolator,” in Micromachining Technology for Micro-Optics, S. H. Lee, E. G. Johnson, eds., SPIE4179, 158–167.

R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
[CrossRef]

A. Smakula, “Verfahren zur Erhöhung der Lichtdurchlässigkeit optischer Teile durch Erniedrigung des Brechungsexponenten an den Grenzflächen dieser optischen Teile,” German patentDE685767 (1November1935).

E. Hecht, Optik (Addison-Wesley, Bonn, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Diffractive optical isolator consisting of a polarizing single-order grating and a birefringent zero-order grating.

Fig. 2
Fig. 2

Single-order grating in a Bragg mount. The incident wave vector makes a polar angle θ B with the surface normal. Some reflected parts of the beams are shown that may contribute to interference effects.

Fig. 3
Fig. 3

Diffraction efficiencies of dielectric surface-corrugated gratings in first transmitted order for the Bragg incidence with different surface profiles: (top to bottom) pyramidal, sinusoidal, and binary surface shape for (left) TE- and (right) TM-polarized light, over the normalized grating period Λ/λ and the normalized grating depth D/λ, for n = 1.46 (independent of wavelength λ).

Fig. 4
Fig. 4

Maximum diffraction efficiency in first transmitted order for different surface shapes, for (top) TE- and (bottom) TM-polarized light, n = 1.46.

Fig. 5
Fig. 5

Maximum diffraction efficiency in first transmitted order for different surface shapes, for (top) TE- and (bottom) TM-polarized light, n = 2.6.

Fig. 6
Fig. 6

Maximum diffraction efficiency in first transmitted order for binary surface shape, for (top) TE- and (bottom) TM-polarized light.

Fig. 7
Fig. 7

Maximum diffraction efficiency in first transmitted order for binary surface shape with dependence on the filling factor f for (left) TE- and (middle) TM-polarized light. The right column shows the absolute difference between the diffracted energy for both orthogonal states of polarization.

Fig. 8
Fig. 8

Diffraction efficiency for some non-binary-shaped gratings with dependence on the number of layers used for describing the surface shape.

Fig. 9
Fig. 9

Diffraction orders for conical incidence (azimuth angle ϕ ≠ 0) for a grating with Λ ≫ λ.

Fig. 10
Fig. 10

Rigorous calculation of the phase difference ϕ = ϕTETM between TE- and TM-polarized light for a binary grating with Λ = 290 nm, f = 0.5 at λ = 543 nm (θ B = 40.84°, n = 1.46).

Fig. 11
Fig. 11

Raster e-beam microscopy picture of typical Au-coated single-order gratings in quartz.

Fig. 12
Fig. 12

Birefringence and undiffracted transmitted TE-polarized light for a grating with Λ = 415 nm. The rigorous calculations were performed for the optimized design values f = 0.49, D = 1.65 µm, perpendicular grating ridge walls, and with consideration of Fresnel losses.

Fig. 13
Fig. 13

Comparison between measured and rigorously calculated diffraction efficiencies into zeroth (0T) and first transmitted diffraction order (1T) at 543 nm of a polarization beam splitter with Λ = 415 nm and target parameters of f = 0.49, and D = 1.65 µm.

Fig. 14
Fig. 14

Experimental setup for measuring the polarization transformation of the pure diffractive optical isolator.

Fig. 15
Fig. 15

Measured power P 17 as a relative size for the power that is not isolated and thus returned back to the source.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θin=θB=arcsinλ2Λ,
10logP16P11  -15 dB.

Metrics