Abstract

Interference gratings, plano-convex microlenses, and spherical microlenses have been made in silicone. Lenses were fabricated by the melting method. Two substrates have been tried: glass and Teflon. The latter substrate lets us fabricate low-f-number lenses. We made spherical microlenses by placing pieces of silicone near a thermal source and studied resolution of the lenses by investigating the images they gave of a test chart. We made low-spatial-frequency gratings by recording interference patterns and studied parameters involved in the recording. A study of the profile of the gratings and lenses was done with a mechanical surface analyzer.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Herzig, ed., Micro-Optics Elements, Systems and Applications (Taylor & Francis, London, 1997).
  2. W. Royall Cox, T. Chen, D. J. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News (June2001), pp. 32–35.
  3. D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra 34, 167–169 (2000).
  4. H. P. Herzig, ed., Micro-Optics Elements, Systems and Applications (Taylor & Francis, London, 1997), Chap. 4. See references therein.
  5. G. Odian, Principles of Polimerization (Wiley-Interscience, New York, 1991).
  6. Truper Company, Miguel de Cervantes 67, Postal code 11520, Mexico D.F., www.truper.com .
  7. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).
  8. S. Calixto, M. Ornelas, “Mid-infrared microlenses by the melting method,” Opt. Lett. 24, 1212–1214 (1998).
    [CrossRef]
  9. Federal Products Corporation, 1144 Eddy Street, Providence, R. I. 02940-9400.
  10. S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1325 (1993).
    [CrossRef]
  11. D. Hartmann, O. Kibuar, S. Esener, “Optimization and theoretical modeling of polymer microlens array fabricated with the hydrophobic effect,” Appl. Opt. 40, 2736–2746 (2001).
    [CrossRef]
  12. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).
  13. Edmund Scientific Company, 101 East Gloucester Pike, Barrington, N.J. 08007-1380. Product #L38–256.
  14. J. Lewandowski, B. Mongeau, M. Cormier, “Real time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984).
    [CrossRef]
  15. R. Beaulieu, R. A. Lessard, R. A. Cormier, M. Blanchard, M. Rioux, “Pulsed ir holography on Takiwax films,” Appl. Opt. 17, 3619–3621 (1978).
    [CrossRef] [PubMed]
  16. S. Calixto, “Infrared recording and reconstruction of diffractive elements on thin films,” in Photopolymer Device Physics, Chemistry and Applications, R. A. Lessard, ed., Proc. SPIE1213, 32–38 (1990).
  17. S. Calixto, “Infrared recording with gelatin films,” Appl. Opt. 27, 1977–1983 (1988).
    [CrossRef] [PubMed]
  18. J. Upatnieks, A. Vander Lught, E. Leith, “Correction of lens aberrations by means of holograms,” Appl. Opt. 5, 589–593 (1966).
    [CrossRef] [PubMed]
  19. T. Stone, N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
    [CrossRef] [PubMed]
  20. F. Saber, J. Hans, C. R. Nijander, A. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
    [CrossRef]
  21. L. Goncalves Neto, L. Brassolatti Roberto, P. Verdonck, R. D. Mansano, G. A. Lirino, M. A. Stefani, “Design and fabrication of a hybrid diffractive optical device for multiple-line generation over a wide angle,” Appl. Opt. 40, 211–218 (2001).
    [CrossRef]
  22. S. Trout, H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng. 39, 290–298 (2000).
    [CrossRef]
  23. C. Croutxe-Barghon, O. Soppera, D. J. Lougnot, “Fabrication of microlenses by direct photo-induced crosslinking polymerization,” Appl. Surf. Sci. 168, 89–91 (2000).
    [CrossRef]
  24. S. Sirkova, M. Kavehrad, “Holographical optical receiver front end for wireless infrared indoor communications,” Appl. Opt. 40, 2828–2835 (2001).
    [CrossRef]

2001

2000

D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra 34, 167–169 (2000).

S. Trout, H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng. 39, 290–298 (2000).
[CrossRef]

C. Croutxe-Barghon, O. Soppera, D. J. Lougnot, “Fabrication of microlenses by direct photo-induced crosslinking polymerization,” Appl. Surf. Sci. 168, 89–91 (2000).
[CrossRef]

1998

1994

F. Saber, J. Hans, C. R. Nijander, A. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

1993

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1325 (1993).
[CrossRef]

1988

1984

1978

1966

Beaulieu, R.

Bishop, D.

D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra 34, 167–169 (2000).

Blanchard, M.

Brassolatti Roberto, L.

Calixto, S.

S. Calixto, M. Ornelas, “Mid-infrared microlenses by the melting method,” Opt. Lett. 24, 1212–1214 (1998).
[CrossRef]

S. Calixto, “Infrared recording with gelatin films,” Appl. Opt. 27, 1977–1983 (1988).
[CrossRef] [PubMed]

S. Calixto, “Infrared recording and reconstruction of diffractive elements on thin films,” in Photopolymer Device Physics, Chemistry and Applications, R. A. Lessard, ed., Proc. SPIE1213, 32–38 (1990).

Chen, T.

W. Royall Cox, T. Chen, D. J. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News (June2001), pp. 32–35.

Cormier, M.

Cormier, R. A.

Croutxe-Barghon, C.

C. Croutxe-Barghon, O. Soppera, D. J. Lougnot, “Fabrication of microlenses by direct photo-induced crosslinking polymerization,” Appl. Surf. Sci. 168, 89–91 (2000).
[CrossRef]

Esener, S.

Feldblum, A.

F. Saber, J. Hans, C. R. Nijander, A. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

George, N.

Giles, R.

D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra 34, 167–169 (2000).

Goncalves Neto, L.

Hans, J.

F. Saber, J. Hans, C. R. Nijander, A. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

Hartmann, D.

Haselbeck, S.

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1325 (1993).
[CrossRef]

Hayes, D. J.

W. Royall Cox, T. Chen, D. J. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News (June2001), pp. 32–35.

Herzig, H. P.

S. Trout, H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng. 39, 290–298 (2000).
[CrossRef]

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

Kavehrad, M.

Kibuar, O.

Leith, E.

Lessard, R. A.

Lewandowski, J.

Lirino, G. A.

Lougnot, D. J.

C. Croutxe-Barghon, O. Soppera, D. J. Lougnot, “Fabrication of microlenses by direct photo-induced crosslinking polymerization,” Appl. Surf. Sci. 168, 89–91 (2000).
[CrossRef]

Mansano, R. D.

Mongeau, B.

Nijander, C. R.

F. Saber, J. Hans, C. R. Nijander, A. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

Odian, G.

G. Odian, Principles of Polimerization (Wiley-Interscience, New York, 1991).

Ornelas, M.

Rioux, M.

Roxlo, C.

D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra 34, 167–169 (2000).

Royall Cox, W.

W. Royall Cox, T. Chen, D. J. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News (June2001), pp. 32–35.

Saber, F.

F. Saber, J. Hans, C. R. Nijander, A. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

Schreiber, H.

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1325 (1993).
[CrossRef]

Schwider, J.

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1325 (1993).
[CrossRef]

Sirkova, S.

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).

Soppera, O.

C. Croutxe-Barghon, O. Soppera, D. J. Lougnot, “Fabrication of microlenses by direct photo-induced crosslinking polymerization,” Appl. Surf. Sci. 168, 89–91 (2000).
[CrossRef]

Stefani, M. A.

Stone, T.

Streibl, N.

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1325 (1993).
[CrossRef]

Townsend, W. P.

F. Saber, J. Hans, C. R. Nijander, A. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

Trout, S.

S. Trout, H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng. 39, 290–298 (2000).
[CrossRef]

Upatnieks, J.

Vander Lught, A.

Verdonck, P.

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

Appl. Opt.

Appl. Surf. Sci.

C. Croutxe-Barghon, O. Soppera, D. J. Lougnot, “Fabrication of microlenses by direct photo-induced crosslinking polymerization,” Appl. Surf. Sci. 168, 89–91 (2000).
[CrossRef]

Opt. Eng.

F. Saber, J. Hans, C. R. Nijander, A. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

S. Trout, H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng. 39, 290–298 (2000).
[CrossRef]

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1325 (1993).
[CrossRef]

Opt. Lett.

Opt. Photon. News

W. Royall Cox, T. Chen, D. J. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News (June2001), pp. 32–35.

Photonics Spectra

D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra 34, 167–169 (2000).

Other

H. P. Herzig, ed., Micro-Optics Elements, Systems and Applications (Taylor & Francis, London, 1997), Chap. 4. See references therein.

G. Odian, Principles of Polimerization (Wiley-Interscience, New York, 1991).

Truper Company, Miguel de Cervantes 67, Postal code 11520, Mexico D.F., www.truper.com .

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957).

Federal Products Corporation, 1144 Eddy Street, Providence, R. I. 02940-9400.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).

Edmund Scientific Company, 101 East Gloucester Pike, Barrington, N.J. 08007-1380. Product #L38–256.

S. Calixto, “Infrared recording and reconstruction of diffractive elements on thin films,” in Photopolymer Device Physics, Chemistry and Applications, R. A. Lessard, ed., Proc. SPIE1213, 32–38 (1990).

H. P. Herzig, ed., Micro-Optics Elements, Systems and Applications (Taylor & Francis, London, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Transmittance of silicone disks as a function of wavelength for the (a) and (b) UV-nearinfrared region and (c) for the midinfrared wavelength. The parameter shown is the thickness of the layers.

Fig. 2
Fig. 2

Profile of lenses taken with a mechanical surface analyzer. The parameter is the preform’s thickness before the melting step. The preform’s diameter was approximately 950 µm.

Fig. 3
Fig. 3

Back focal distance as a function of the preform’s thickness. The parameter is the preform’s diameter.

Fig. 4
Fig. 4

Profile of lenses taken with a surface analyzer. Teflon was the substrate during melting time. The parameter is the preform’s thickness before melting.

Fig. 5
Fig. 5

Profile of lenses made on glass [(a) and (b)] and Teflon [(c) and (d)].

Fig. 6
Fig. 6

(a) Spherical lenses. Diameter of the smallest lens is approximately 700 µm. (b) Images of letter B formed by the lenses.

Fig. 7
Fig. 7

(a) Comparison between the best-fitting circle and the curve obtained with a surface analyzer of the top of a spherical lens. On the lower part is shown the difference (error) between both curves. (b) Enlargement of the error.

Fig. 8
Fig. 8

Image of a test target (U.S. Air Force 1951) given by a spherical lens. Group 5, element 2 can be seen.

Fig. 9
Fig. 9

Grating profiles given by a mechanical surface analyzer. The parameter was exposure time.

Fig. 10
Fig. 10

Profiles of various interference gratings. Recording power was kept constant at 7 W/cm2. Spatial frequency was the parameter.

Fig. 11
Fig. 11

Depth modulation as a function of spatial frequency of interference gratings.

Fig. 12
Fig. 12

Profiles of different recorded interference gratings. Spatial frequency (∼4 lines/mm) and time of exposure (50 ms) were kept constant. The parameter was the power of the writing beams.

Fig. 13
Fig. 13

Profiles of two recorded gratings. Energy was kept constant. Time of exposure and power were the parameters.

Fig. 14
Fig. 14

Intensity spatial distribution in the focal plane of the lens that had an interference grating recorded in one of its surfaces.

Metrics