Abstract

We present an experimental demonstration of two new methods for electronically modulating diffractive structures. The first involves the creation of periodic displacement of a liquid-air interface by application of a spatially modulated electric field produced by an array of electrodes. The second method also uses an electrode array but creates a diffraction grating by selectively attracting and repelling electrophoretic particles in a dielectric fluid. Potential areas of application of these techniques include controllable holography and wavelength division multiplexing.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17, 1217–1220 (1999).
    [CrossRef]
  2. Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
    [CrossRef]
  3. P. C. Hill, B. J. Eggleton, “Strain gradient chirp of fibre Bragg gratings,” IEEE Electron. Lett. 30, 1172–1173 (1994).
    [CrossRef]
  4. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445–447 (1999).
    [CrossRef]
  5. W. Gabathuler, W. Lukosz, “Electro-nanomechanically wavelength-tunable integrated-optical Bragg reflectors,” Opt. Commun. 135, 385–393 (1997).
    [CrossRef]
  6. D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics (Wiley, New York, 1993), p. 1088.
  7. R. S. Burdon, Surface Tension and the Spreading of Liquids (Cambridge U. Press, Cambridge, UK, 1949), pp. 15–16, 35–41.
  8. J. T. Remillard, J. M. Ginder, W. H. Weber, “Evanescent-wave scattering by electrophoretic microparticles: a mechanism for optical switching,” Appl. Opt. 34, 3777–3785 (1995).
    [CrossRef] [PubMed]
  9. R. C. Hayward, D. A. Saville, I. A. Aksay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature (London) 404, 56–59 (2000).
    [CrossRef]

2000 (1)

R. C. Hayward, D. A. Saville, I. A. Aksay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature (London) 404, 56–59 (2000).
[CrossRef]

1999 (3)

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17, 1217–1220 (1999).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[CrossRef]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445–447 (1999).
[CrossRef]

1997 (1)

W. Gabathuler, W. Lukosz, “Electro-nanomechanically wavelength-tunable integrated-optical Bragg reflectors,” Opt. Commun. 135, 385–393 (1997).
[CrossRef]

1995 (1)

1994 (1)

P. C. Hill, B. J. Eggleton, “Strain gradient chirp of fibre Bragg gratings,” IEEE Electron. Lett. 30, 1172–1173 (1994).
[CrossRef]

Abramov, A. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445–447 (1999).
[CrossRef]

Aksay, I. A.

R. C. Hayward, D. A. Saville, I. A. Aksay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature (London) 404, 56–59 (2000).
[CrossRef]

Bennion, I.

Burdon, R. S.

R. S. Burdon, Surface Tension and the Spreading of Liquids (Cambridge U. Press, Cambridge, UK, 1949), pp. 15–16, 35–41.

Chisholm, K. E.

Chu, P. L.

Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[CrossRef]

Eggleton, B. J.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445–447 (1999).
[CrossRef]

P. C. Hill, B. J. Eggleton, “Strain gradient chirp of fibre Bragg gratings,” IEEE Electron. Lett. 30, 1172–1173 (1994).
[CrossRef]

Espindola, R. P.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445–447 (1999).
[CrossRef]

Everall, L. A.

Gabathuler, W.

W. Gabathuler, W. Lukosz, “Electro-nanomechanically wavelength-tunable integrated-optical Bragg reflectors,” Opt. Commun. 135, 385–393 (1997).
[CrossRef]

Ginder, J. M.

Hale, A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445–447 (1999).
[CrossRef]

Halliday, D.

D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics (Wiley, New York, 1993), p. 1088.

Hayward, R. C.

R. C. Hayward, D. A. Saville, I. A. Aksay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature (London) 404, 56–59 (2000).
[CrossRef]

Hill, P. C.

P. C. Hill, B. J. Eggleton, “Strain gradient chirp of fibre Bragg gratings,” IEEE Electron. Lett. 30, 1172–1173 (1994).
[CrossRef]

Iocco, A.

Limberger, H. G.

Lukosz, W.

W. Gabathuler, W. Lukosz, “Electro-nanomechanically wavelength-tunable integrated-optical Bragg reflectors,” Opt. Commun. 135, 385–393 (1997).
[CrossRef]

Peng, G. D.

Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[CrossRef]

Remillard, J. T.

Resnick, R.

D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics (Wiley, New York, 1993), p. 1088.

Rogers, J. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445–447 (1999).
[CrossRef]

Salathe, R. P.

Saville, D. A.

R. C. Hayward, D. A. Saville, I. A. Aksay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature (London) 404, 56–59 (2000).
[CrossRef]

Strasser, T. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445–447 (1999).
[CrossRef]

Walker, J.

D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics (Wiley, New York, 1993), p. 1088.

Weber, W. H.

Williams, J. A. R.

Windeler, R. S.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445–447 (1999).
[CrossRef]

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[CrossRef]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[CrossRef]

Appl. Opt. (1)

IEEE Electron. Lett. (1)

P. C. Hill, B. J. Eggleton, “Strain gradient chirp of fibre Bragg gratings,” IEEE Electron. Lett. 30, 1172–1173 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11, 445–447 (1999).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Nature (London) (1)

R. C. Hayward, D. A. Saville, I. A. Aksay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature (London) 404, 56–59 (2000).
[CrossRef]

Opt. Commun. (1)

W. Gabathuler, W. Lukosz, “Electro-nanomechanically wavelength-tunable integrated-optical Bragg reflectors,” Opt. Commun. 135, 385–393 (1997).
[CrossRef]

Other (2)

D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics (Wiley, New York, 1993), p. 1088.

R. S. Burdon, Surface Tension and the Spreading of Liquids (Cambridge U. Press, Cambridge, UK, 1949), pp. 15–16, 35–41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Deformation of a liquid-air interface by an applied electric field.

Fig. 2
Fig. 2

Field-induced motion of electrophoretic particles.

Fig. 3
Fig. 3

Interdigital electrode array.

Fig. 4
Fig. 4

Observation of diffraction intensity distribution.

Fig. 5
Fig. 5

Fluid-air interface grating with and without voltage applied.

Fig. 6
Fig. 6

Electrophoretic particle grating with and without voltage applied.

Fig. 7
Fig. 7

Diffraction patterns caused by air-oil surface deformation and electrode array with and without periodic applied voltage.

Fig. 8
Fig. 8

Graph of intensity of diffraction patterns caused by air-oil surface deformation and electrode array with and without periodic applied voltage.

Fig. 9
Fig. 9

Graph of comparison between model and data of zeroth-order diffraction versus applied voltage.

Fig. 10
Fig. 10

Diffraction patterns caused by electrophoretic particle grating and electrode array with and without periodic applied voltage.

Fig. 11
Fig. 11

Graph of intensity of diffraction patterns caused by electrophoretic particle grating and electrode array with and without periodic applied voltage.

Fig. 12
Fig. 12

Electrophoretic particle grating model.

Fig. 13
Fig. 13

Graph of modeled results of relative transmission of zeroth-order diffraction versus thickness of electrophoretic grating.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d sinθ=mλ,
a  εμV2w2d2,
T=1+coskV222,
τ  υμw2d,
τ  w3 ρμ1/2,

Metrics