Abstract

Concentration profiles of trichloroethene were measured in a boundary-layer flow over a heated ceramic surface. Raman scattering was excited with the fifth harmonic of a Nd:YAG laser at 213 nm. This wavelength took advantage of a resonance in the trichloroethene molecule to significantly enhance the C2HCl3 scattering cross section. The resonant Raman system was calibrated in a heated flow. The optical system was optimized so that measurements could be obtained close to the solid surface, normally a significant challenge for a spontaneous Raman-scattering setup. Measured concentrations indicated the lack of catalytic activity on a bare alumina surface. However, the results showed that a surface that was coated with Cr2O3-based zeolite was catalytically active.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Pfefferle, T. A. Griffin, M. Winter, D. R. Crosley, M. J. Dyer, “The influence of catalytic activity on the ignition of boundary layer flows. Part I. Hydroxyl radical measurements,” Combust. Flame 76, 325–338 (1989).
    [CrossRef]
  2. L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The influence of catalytic activity on the ignition of boundary layer flows. Part II. Oxygen atom measurements,” Combust. Flame 76, 339–349 (1989).
    [CrossRef]
  3. L. D. Talley, W. A. Sanders, D. J. Bogan, M. C. Lin, “Dynamics of hydroxyl radical desorption from a polycrystalline platinum surface.” J. Phys. Chem. 75, 3107–13 (1981).
    [CrossRef]
  4. S. Ljundstrom, J. Hall, B. Kasemo, A. Rosen, T. Wahnstrom, “A comparative study of OH radical desorption in the H2 + O2 reaction on Pt, Pd, Rh, Ir, and Ni,” J. Catal. 107, 548–556 (1987).
    [CrossRef]
  5. R. J. Cattolica, R. W. Schefer, “The effect of surface chemistry on the development of the [OH] profile in a combustion boundary layer,” in Proceedings of the Nineteenth International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1982), pp. 311–318.
    [CrossRef]
  6. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, Amsterdam, 1996).
  7. J. D. Getty, S. G. Westre, D. Z. Bezabeh, G. A. Barrall, M. J. Burmeister, P. B. Kelly, “Detection of benzene and trichloroethylene in sooting flames,” Appl. Spectrosc. 46, 620–625 (1992).
    [CrossRef]
  8. H. W. Schrotter, H. W. Klockner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, New York, 1979), pp. 123–166.
    [CrossRef]
  9. M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic, New York, 1985).
  10. S. Chatterjee, H. L. Greene, “Oxidative catalysis of chlorinated hydrocarbons metal-loaded acid catalysts,” J. Catal. 130, 76–85 (1991).
    [CrossRef]
  11. S. Chatterjee, H. L. Greene, Y. J. Park, “Comparison of modified transition metal-exchanged zeolite catalysts for oxidation of chlorinated hydrocarbons,” J. Catal. 138, 179–194 (1992).
    [CrossRef]
  12. R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, Washington, D. C., 1981).
  13. F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer (Wiley, New York, 1996).
  14. D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “Detection of ethyl chloride using photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
    [CrossRef]
  15. R. D. Kenner, H. K. Haak, F. Stuhl, “Cl2 and HCl emissions in ArF-laser photolyses of chlorinated compounds: identification and mechanism of generation,” J. Phys. Chem. 85, 1915–1923 (1986).
    [CrossRef]
  16. D. A. Predmore, A. M. Murray, M. D. Harmony, “Laser-excitation spectrum of gas-phase CCl2,” Chem. Phys. Lett. 110, 173–177 (1984).
    [CrossRef]
  17. F. Melen, Y. Houbrechts, I. Dobois, H. Bredohl, “The electronic spectrum of CCl,” J. Phys. B 16, 2523–2530 (1983).
    [CrossRef]
  18. W. B. Lewis, W. R. Wadt, “Laser-induced fluorescence in N2 and N2+ by multiple-photon excitation at 266 nm,” Chem. Phys. Lett. 78, 266–269 (1981).
    [CrossRef]
  19. M. Martin, “C2 spectroscopy and kinetics,” J. Photochem. Photobiol. A 66, 263–289 (1992).
    [CrossRef]
  20. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Prentice-Hall, New York, 1945).
  21. S. Lederman, “The use of laser raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
    [CrossRef]
  22. P. B. Kelly, B. Hudson, “Laser induced fluorescence and resonance Raman spectra of molecular oxygen,” Chem. Phys. Lett. 114, 451–455 (1985).
    [CrossRef]

1992

J. D. Getty, S. G. Westre, D. Z. Bezabeh, G. A. Barrall, M. J. Burmeister, P. B. Kelly, “Detection of benzene and trichloroethylene in sooting flames,” Appl. Spectrosc. 46, 620–625 (1992).
[CrossRef]

S. Chatterjee, H. L. Greene, Y. J. Park, “Comparison of modified transition metal-exchanged zeolite catalysts for oxidation of chlorinated hydrocarbons,” J. Catal. 138, 179–194 (1992).
[CrossRef]

D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “Detection of ethyl chloride using photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
[CrossRef]

M. Martin, “C2 spectroscopy and kinetics,” J. Photochem. Photobiol. A 66, 263–289 (1992).
[CrossRef]

1991

S. Chatterjee, H. L. Greene, “Oxidative catalysis of chlorinated hydrocarbons metal-loaded acid catalysts,” J. Catal. 130, 76–85 (1991).
[CrossRef]

1989

L. D. Pfefferle, T. A. Griffin, M. Winter, D. R. Crosley, M. J. Dyer, “The influence of catalytic activity on the ignition of boundary layer flows. Part I. Hydroxyl radical measurements,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The influence of catalytic activity on the ignition of boundary layer flows. Part II. Oxygen atom measurements,” Combust. Flame 76, 339–349 (1989).
[CrossRef]

1987

S. Ljundstrom, J. Hall, B. Kasemo, A. Rosen, T. Wahnstrom, “A comparative study of OH radical desorption in the H2 + O2 reaction on Pt, Pd, Rh, Ir, and Ni,” J. Catal. 107, 548–556 (1987).
[CrossRef]

1986

R. D. Kenner, H. K. Haak, F. Stuhl, “Cl2 and HCl emissions in ArF-laser photolyses of chlorinated compounds: identification and mechanism of generation,” J. Phys. Chem. 85, 1915–1923 (1986).
[CrossRef]

1985

P. B. Kelly, B. Hudson, “Laser induced fluorescence and resonance Raman spectra of molecular oxygen,” Chem. Phys. Lett. 114, 451–455 (1985).
[CrossRef]

1984

D. A. Predmore, A. M. Murray, M. D. Harmony, “Laser-excitation spectrum of gas-phase CCl2,” Chem. Phys. Lett. 110, 173–177 (1984).
[CrossRef]

1983

F. Melen, Y. Houbrechts, I. Dobois, H. Bredohl, “The electronic spectrum of CCl,” J. Phys. B 16, 2523–2530 (1983).
[CrossRef]

1981

W. B. Lewis, W. R. Wadt, “Laser-induced fluorescence in N2 and N2+ by multiple-photon excitation at 266 nm,” Chem. Phys. Lett. 78, 266–269 (1981).
[CrossRef]

L. D. Talley, W. A. Sanders, D. J. Bogan, M. C. Lin, “Dynamics of hydroxyl radical desorption from a polycrystalline platinum surface.” J. Phys. Chem. 75, 3107–13 (1981).
[CrossRef]

1977

S. Lederman, “The use of laser raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
[CrossRef]

Barrall, G. A.

Bezabeh, D. Z.

Bogan, D. J.

L. D. Talley, W. A. Sanders, D. J. Bogan, M. C. Lin, “Dynamics of hydroxyl radical desorption from a polycrystalline platinum surface.” J. Phys. Chem. 75, 3107–13 (1981).
[CrossRef]

Bredohl, H.

F. Melen, Y. Houbrechts, I. Dobois, H. Bredohl, “The electronic spectrum of CCl,” J. Phys. B 16, 2523–2530 (1983).
[CrossRef]

Burmeister, M. J.

Cattolica, R. J.

R. J. Cattolica, R. W. Schefer, “The effect of surface chemistry on the development of the [OH] profile in a combustion boundary layer,” in Proceedings of the Nineteenth International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1982), pp. 311–318.
[CrossRef]

Chatterjee, S.

S. Chatterjee, H. L. Greene, Y. J. Park, “Comparison of modified transition metal-exchanged zeolite catalysts for oxidation of chlorinated hydrocarbons,” J. Catal. 138, 179–194 (1992).
[CrossRef]

S. Chatterjee, H. L. Greene, “Oxidative catalysis of chlorinated hydrocarbons metal-loaded acid catalysts,” J. Catal. 130, 76–85 (1991).
[CrossRef]

Crosley, D. R.

L. D. Pfefferle, T. A. Griffin, M. Winter, D. R. Crosley, M. J. Dyer, “The influence of catalytic activity on the ignition of boundary layer flows. Part I. Hydroxyl radical measurements,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The influence of catalytic activity on the ignition of boundary layer flows. Part II. Oxygen atom measurements,” Combust. Flame 76, 339–349 (1989).
[CrossRef]

DeWitt, D. P.

F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer (Wiley, New York, 1996).

Dobois, I.

F. Melen, Y. Houbrechts, I. Dobois, H. Bredohl, “The electronic spectrum of CCl,” J. Phys. B 16, 2523–2530 (1983).
[CrossRef]

Dyer, M. J.

L. D. Pfefferle, T. A. Griffin, M. Winter, D. R. Crosley, M. J. Dyer, “The influence of catalytic activity on the ignition of boundary layer flows. Part I. Hydroxyl radical measurements,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The influence of catalytic activity on the ignition of boundary layer flows. Part II. Oxygen atom measurements,” Combust. Flame 76, 339–349 (1989).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, Amsterdam, 1996).

Getty, J. D.

Greene, H. L.

S. Chatterjee, H. L. Greene, Y. J. Park, “Comparison of modified transition metal-exchanged zeolite catalysts for oxidation of chlorinated hydrocarbons,” J. Catal. 138, 179–194 (1992).
[CrossRef]

S. Chatterjee, H. L. Greene, “Oxidative catalysis of chlorinated hydrocarbons metal-loaded acid catalysts,” J. Catal. 130, 76–85 (1991).
[CrossRef]

Griffin, T. A.

L. D. Pfefferle, T. A. Griffin, M. Winter, D. R. Crosley, M. J. Dyer, “The influence of catalytic activity on the ignition of boundary layer flows. Part I. Hydroxyl radical measurements,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The influence of catalytic activity on the ignition of boundary layer flows. Part II. Oxygen atom measurements,” Combust. Flame 76, 339–349 (1989).
[CrossRef]

Haak, H. K.

R. D. Kenner, H. K. Haak, F. Stuhl, “Cl2 and HCl emissions in ArF-laser photolyses of chlorinated compounds: identification and mechanism of generation,” J. Phys. Chem. 85, 1915–1923 (1986).
[CrossRef]

Hall, J.

S. Ljundstrom, J. Hall, B. Kasemo, A. Rosen, T. Wahnstrom, “A comparative study of OH radical desorption in the H2 + O2 reaction on Pt, Pd, Rh, Ir, and Ni,” J. Catal. 107, 548–556 (1987).
[CrossRef]

Harmony, M. D.

D. A. Predmore, A. M. Murray, M. D. Harmony, “Laser-excitation spectrum of gas-phase CCl2,” Chem. Phys. Lett. 110, 173–177 (1984).
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Prentice-Hall, New York, 1945).

Houbrechts, Y.

F. Melen, Y. Houbrechts, I. Dobois, H. Bredohl, “The electronic spectrum of CCl,” J. Phys. B 16, 2523–2530 (1983).
[CrossRef]

Howell, J. R.

R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, Washington, D. C., 1981).

Hudson, B.

P. B. Kelly, B. Hudson, “Laser induced fluorescence and resonance Raman spectra of molecular oxygen,” Chem. Phys. Lett. 114, 451–455 (1985).
[CrossRef]

Incropera, F. P.

F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer (Wiley, New York, 1996).

Kasemo, B.

S. Ljundstrom, J. Hall, B. Kasemo, A. Rosen, T. Wahnstrom, “A comparative study of OH radical desorption in the H2 + O2 reaction on Pt, Pd, Rh, Ir, and Ni,” J. Catal. 107, 548–556 (1987).
[CrossRef]

Kelly, P. B.

J. D. Getty, S. G. Westre, D. Z. Bezabeh, G. A. Barrall, M. J. Burmeister, P. B. Kelly, “Detection of benzene and trichloroethylene in sooting flames,” Appl. Spectrosc. 46, 620–625 (1992).
[CrossRef]

P. B. Kelly, B. Hudson, “Laser induced fluorescence and resonance Raman spectra of molecular oxygen,” Chem. Phys. Lett. 114, 451–455 (1985).
[CrossRef]

Kenner, R. D.

R. D. Kenner, H. K. Haak, F. Stuhl, “Cl2 and HCl emissions in ArF-laser photolyses of chlorinated compounds: identification and mechanism of generation,” J. Phys. Chem. 85, 1915–1923 (1986).
[CrossRef]

Klockner, H. W.

H. W. Schrotter, H. W. Klockner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, New York, 1979), pp. 123–166.
[CrossRef]

Koshland, C. P.

D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “Detection of ethyl chloride using photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
[CrossRef]

Lederman, S.

S. Lederman, “The use of laser raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
[CrossRef]

Lewis, W. B.

W. B. Lewis, W. R. Wadt, “Laser-induced fluorescence in N2 and N2+ by multiple-photon excitation at 266 nm,” Chem. Phys. Lett. 78, 266–269 (1981).
[CrossRef]

Lin, M. C.

L. D. Talley, W. A. Sanders, D. J. Bogan, M. C. Lin, “Dynamics of hydroxyl radical desorption from a polycrystalline platinum surface.” J. Phys. Chem. 75, 3107–13 (1981).
[CrossRef]

Ljundstrom, S.

S. Ljundstrom, J. Hall, B. Kasemo, A. Rosen, T. Wahnstrom, “A comparative study of OH radical desorption in the H2 + O2 reaction on Pt, Pd, Rh, Ir, and Ni,” J. Catal. 107, 548–556 (1987).
[CrossRef]

Lucas, D.

D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “Detection of ethyl chloride using photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
[CrossRef]

Martin, M.

M. Martin, “C2 spectroscopy and kinetics,” J. Photochem. Photobiol. A 66, 263–289 (1992).
[CrossRef]

McEnally, C. S.

D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “Detection of ethyl chloride using photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
[CrossRef]

Melen, F.

F. Melen, Y. Houbrechts, I. Dobois, H. Bredohl, “The electronic spectrum of CCl,” J. Phys. B 16, 2523–2530 (1983).
[CrossRef]

Murray, A. M.

D. A. Predmore, A. M. Murray, M. D. Harmony, “Laser-excitation spectrum of gas-phase CCl2,” Chem. Phys. Lett. 110, 173–177 (1984).
[CrossRef]

Park, Y. J.

S. Chatterjee, H. L. Greene, Y. J. Park, “Comparison of modified transition metal-exchanged zeolite catalysts for oxidation of chlorinated hydrocarbons,” J. Catal. 138, 179–194 (1992).
[CrossRef]

Pfefferle, L. D.

L. D. Pfefferle, T. A. Griffin, M. Winter, D. R. Crosley, M. J. Dyer, “The influence of catalytic activity on the ignition of boundary layer flows. Part I. Hydroxyl radical measurements,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The influence of catalytic activity on the ignition of boundary layer flows. Part II. Oxygen atom measurements,” Combust. Flame 76, 339–349 (1989).
[CrossRef]

Predmore, D. A.

D. A. Predmore, A. M. Murray, M. D. Harmony, “Laser-excitation spectrum of gas-phase CCl2,” Chem. Phys. Lett. 110, 173–177 (1984).
[CrossRef]

Robin, M. B.

M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic, New York, 1985).

Rosen, A.

S. Ljundstrom, J. Hall, B. Kasemo, A. Rosen, T. Wahnstrom, “A comparative study of OH radical desorption in the H2 + O2 reaction on Pt, Pd, Rh, Ir, and Ni,” J. Catal. 107, 548–556 (1987).
[CrossRef]

Sanders, W. A.

L. D. Talley, W. A. Sanders, D. J. Bogan, M. C. Lin, “Dynamics of hydroxyl radical desorption from a polycrystalline platinum surface.” J. Phys. Chem. 75, 3107–13 (1981).
[CrossRef]

Sawyer, R. F.

D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “Detection of ethyl chloride using photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
[CrossRef]

Schefer, R. W.

R. J. Cattolica, R. W. Schefer, “The effect of surface chemistry on the development of the [OH] profile in a combustion boundary layer,” in Proceedings of the Nineteenth International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1982), pp. 311–318.
[CrossRef]

Schrotter, H. W.

H. W. Schrotter, H. W. Klockner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, New York, 1979), pp. 123–166.
[CrossRef]

Siegel, R.

R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, Washington, D. C., 1981).

Stuhl, F.

R. D. Kenner, H. K. Haak, F. Stuhl, “Cl2 and HCl emissions in ArF-laser photolyses of chlorinated compounds: identification and mechanism of generation,” J. Phys. Chem. 85, 1915–1923 (1986).
[CrossRef]

Talley, L. D.

L. D. Talley, W. A. Sanders, D. J. Bogan, M. C. Lin, “Dynamics of hydroxyl radical desorption from a polycrystalline platinum surface.” J. Phys. Chem. 75, 3107–13 (1981).
[CrossRef]

Wadt, W. R.

W. B. Lewis, W. R. Wadt, “Laser-induced fluorescence in N2 and N2+ by multiple-photon excitation at 266 nm,” Chem. Phys. Lett. 78, 266–269 (1981).
[CrossRef]

Wahnstrom, T.

S. Ljundstrom, J. Hall, B. Kasemo, A. Rosen, T. Wahnstrom, “A comparative study of OH radical desorption in the H2 + O2 reaction on Pt, Pd, Rh, Ir, and Ni,” J. Catal. 107, 548–556 (1987).
[CrossRef]

Westre, S. G.

Winter, M.

L. D. Pfefferle, T. A. Griffin, M. Winter, D. R. Crosley, M. J. Dyer, “The influence of catalytic activity on the ignition of boundary layer flows. Part I. Hydroxyl radical measurements,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

Appl. Spectrosc.

Chem. Phys. Lett.

D. A. Predmore, A. M. Murray, M. D. Harmony, “Laser-excitation spectrum of gas-phase CCl2,” Chem. Phys. Lett. 110, 173–177 (1984).
[CrossRef]

W. B. Lewis, W. R. Wadt, “Laser-induced fluorescence in N2 and N2+ by multiple-photon excitation at 266 nm,” Chem. Phys. Lett. 78, 266–269 (1981).
[CrossRef]

P. B. Kelly, B. Hudson, “Laser induced fluorescence and resonance Raman spectra of molecular oxygen,” Chem. Phys. Lett. 114, 451–455 (1985).
[CrossRef]

Combust. Flame

L. D. Pfefferle, T. A. Griffin, M. Winter, D. R. Crosley, M. J. Dyer, “The influence of catalytic activity on the ignition of boundary layer flows. Part I. Hydroxyl radical measurements,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The influence of catalytic activity on the ignition of boundary layer flows. Part II. Oxygen atom measurements,” Combust. Flame 76, 339–349 (1989).
[CrossRef]

Combust. Sci. Technol.

D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “Detection of ethyl chloride using photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
[CrossRef]

J. Catal.

S. Ljundstrom, J. Hall, B. Kasemo, A. Rosen, T. Wahnstrom, “A comparative study of OH radical desorption in the H2 + O2 reaction on Pt, Pd, Rh, Ir, and Ni,” J. Catal. 107, 548–556 (1987).
[CrossRef]

S. Chatterjee, H. L. Greene, “Oxidative catalysis of chlorinated hydrocarbons metal-loaded acid catalysts,” J. Catal. 130, 76–85 (1991).
[CrossRef]

S. Chatterjee, H. L. Greene, Y. J. Park, “Comparison of modified transition metal-exchanged zeolite catalysts for oxidation of chlorinated hydrocarbons,” J. Catal. 138, 179–194 (1992).
[CrossRef]

J. Photochem. Photobiol. A

M. Martin, “C2 spectroscopy and kinetics,” J. Photochem. Photobiol. A 66, 263–289 (1992).
[CrossRef]

J. Phys. B

F. Melen, Y. Houbrechts, I. Dobois, H. Bredohl, “The electronic spectrum of CCl,” J. Phys. B 16, 2523–2530 (1983).
[CrossRef]

J. Phys. Chem.

R. D. Kenner, H. K. Haak, F. Stuhl, “Cl2 and HCl emissions in ArF-laser photolyses of chlorinated compounds: identification and mechanism of generation,” J. Phys. Chem. 85, 1915–1923 (1986).
[CrossRef]

L. D. Talley, W. A. Sanders, D. J. Bogan, M. C. Lin, “Dynamics of hydroxyl radical desorption from a polycrystalline platinum surface.” J. Phys. Chem. 75, 3107–13 (1981).
[CrossRef]

Prog. Energy Combust. Sci.

S. Lederman, “The use of laser raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
[CrossRef]

Other

R. J. Cattolica, R. W. Schefer, “The effect of surface chemistry on the development of the [OH] profile in a combustion boundary layer,” in Proceedings of the Nineteenth International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1982), pp. 311–318.
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, Amsterdam, 1996).

R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, Washington, D. C., 1981).

F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer (Wiley, New York, 1996).

H. W. Schrotter, H. W. Klockner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, New York, 1979), pp. 123–166.
[CrossRef]

M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic, New York, 1985).

G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Prentice-Hall, New York, 1945).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Optical arrangement.

Fig. 2
Fig. 2

Mirror setup for collection of Raman scattering (two mirrors on the left, conventional one-mirror setup on the right).

Fig. 3
Fig. 3

Calibration of Raman intensities for various species as a function of laser intensity at 800 °C.

Fig. 4
Fig. 4

Calibration of TCE Raman intensities as a function of TCE concentration at 800 °C.

Fig. 5
Fig. 5

Apparatus for investigation of TCE oxidation and pyrolysis over a heated surface.

Fig. 6
Fig. 6

Raman spectra obtained with an incident laser wavelength of 266 nm, collected over 90 min.

Fig. 7
Fig. 7

TCE photolysis spectrum obtained with an incident laser wavelength of 213 nm, collected over 150 min.

Fig. 8
Fig. 8

Detailed spectral scan with excitation at 213 nm and 53 Torr vapor pressure of TCE.

Fig. 9
Fig. 9

TCE mole fraction and temperature along the centerline of the flow approaching the heated surface.

Fig. 10
Fig. 10

Mole fractions of O2, N2, and CH4 along the centerline of the flow.

Fig. 11
Fig. 11

Mole fractions of TCE in the vicinity of a noncatalytic surface.

Fig. 12
Fig. 12

Mole fractions of TCE with a catalytic surface.

Fig. 13
Fig. 13

Mole fractions of TCE in the vicinity of a catalytic surface.

Tables (1)

Tables Icon

Table 1 Raman-Scattering Intensities of Trichloroethene Relative to N2

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ENI=2qIdGΔfS,
IαI0ωlaser-ωmn4 Nρσαρσ2,
αρσ2=evall statesgm|μρ|evev|μσ|gnh¯ωev-h¯ωlaser+iΓev2,
ITCEIH2=b2NTCENH2ωlaser-ωTCEωlaser-ωH241ωe-ωlaser2,
IRaman=CIlaserN0fT=CIlaserNtotalFT,
hAbeadTair-Tmeasured=Abead1-Fbeadsurface×σTmeasured4-AbeadFbeadsurfaceσTsurface4,
Fbeadsurface=121-zr2+z21/2,
If=1-A1-AI0,

Metrics