Abstract

We experimentally demonstrated that the technique to stabilize the output signal by harmonic intensities is useful in heterodyne detection with an incoherent light source such as a halogen lamp. The relation between the relative standard deviation of an output signal and the fluctuation of the light intensity is analyzed and simulated. Using the fundamental to sixth harmonics increases the stabilities of output signal approximately 3 times, and subtracting the relative standard deviation of the intensity of light source enhances the stabilities 49 times. The fluctuating phase that is due to the fluctuating frequency and temperature and its power spectrum density for an interferometer is also calculated with the Allan variance.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Gelmini, U. Minoni, F. Docchio, “A tunable, double-wavelength heterodyne detection interferometer with frequency-locked diode-pumped Nd:YAG sources for absolute measurements,” Rev. Sci. Instrum. 66, 4073–4080 (1995).
    [CrossRef]
  2. C. Grener, B. Boggs, T. Wang, T. W. Mossberg, “Laser frequency stabilization by means of optical self-heterodyne beat-frequency control,” Opt. Lett. 23, 1280–1282 (1998).
    [CrossRef]
  3. D. Narayana Rao, V. Nirmal Kumar, “Stability improvements for an interferometer through study of spectral interference patterns,” Appl. Opt. 38, 2014–2017 (1999).
    [CrossRef]
  4. S. R. Chinn, E. A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
    [CrossRef]
  5. M. Takeda, H. Yamamoto, “Fourier-transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33, 7829–7837 (1994).
    [CrossRef] [PubMed]
  6. N. Tanno, T. Ichimura, T. Funaba, N. Anndo, Y. Odagiri, “Optical multimode frequency-domain reflectometer,” Opt. Lett. 19, 587–589 (1994).
    [CrossRef]
  7. B. Devaraji, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: Laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
    [CrossRef]
  8. T. Funaba, N. Tanno, H. Ito, “Multimode laser reflectometer with a multichannel wavelength detector and its application,” Appl. Opt. 36, 8919–8928 (1997).
    [CrossRef]
  9. G. Le Tolguenec, E. Lantz, F. Devaux, “Imaging through scattering media by parametric amplification of images: Study of the resolution and the signal-to-noise ratio,” Appl. Opt. 36, 8292–8297 (1997).
    [CrossRef]
  10. A. C. Millard, P. W. Wiseman, D. N. Fittinghoff, K. R. Wilson, J. A. Squier, M. Muller, “Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source,” Appl. Opt. 38, 7393–7397 (1999).
    [CrossRef]
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumam, W. G. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  12. J. A. Izatt, M. D. Kulkarrni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
    [CrossRef]
  13. A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3, 12–20 (1998).
    [CrossRef] [PubMed]
  14. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersent, S. E. Ungersma, R. Wang, M. E. Williams, “An optical coherence microscope for 3-dimensional imaging in developmental biology,” Opt. Express 6, 136–146 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  15. M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
    [CrossRef]
  16. M. Sato, Y. Ikeda, M. Endo, S. Fukuda, N. Tanno, “Phase-drift suppression in heterodyne detection using coherent light source,” Opt. Rev. 8, 37–42 (2000).
    [CrossRef]
  17. M. Ohtsu, H. Fukuda, T. Tako, H. Tsuchida, “Estimation of the ultimate frequency stability of semiconductor lasers,” Jpn. J. Appl. Phys. 22, 1157–1166 (1983).
    [CrossRef]
  18. I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1982).
  19. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1944), pp. 452–454.
  20. Y. Noguchi, Y. Teramachi, T. Musha, “Correlation between frequency fluctuations of a quartz oscillator and temperature fluctuations,” Jpn. J. Appl. Phys. 21, 61–66 (1982).
    [CrossRef]
  21. M. Sato, M. Endo, N. Tanno, “Phase-drift suppression method using higher order harmonics in heterodyne detection,” Opt. Rev. 7, 462–467 (2000).
    [CrossRef]
  22. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1991), p. 241.
  23. T. Ikari, M. Sato, N. Tanno, “Compact optical coherence tomography system using partially delayed Fizeau interferometer,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), CTuY.

2000 (4)

B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersent, S. E. Ungersma, R. Wang, M. E. Williams, “An optical coherence microscope for 3-dimensional imaging in developmental biology,” Opt. Express 6, 136–146 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
[CrossRef]

M. Sato, Y. Ikeda, M. Endo, S. Fukuda, N. Tanno, “Phase-drift suppression in heterodyne detection using coherent light source,” Opt. Rev. 8, 37–42 (2000).
[CrossRef]

M. Sato, M. Endo, N. Tanno, “Phase-drift suppression method using higher order harmonics in heterodyne detection,” Opt. Rev. 7, 462–467 (2000).
[CrossRef]

1999 (2)

1998 (2)

C. Grener, B. Boggs, T. Wang, T. W. Mossberg, “Laser frequency stabilization by means of optical self-heterodyne beat-frequency control,” Opt. Lett. 23, 1280–1282 (1998).
[CrossRef]

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3, 12–20 (1998).
[CrossRef] [PubMed]

1997 (2)

1996 (2)

B. Devaraji, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: Laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

J. A. Izatt, M. D. Kulkarrni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

1995 (1)

E. Gelmini, U. Minoni, F. Docchio, “A tunable, double-wavelength heterodyne detection interferometer with frequency-locked diode-pumped Nd:YAG sources for absolute measurements,” Rev. Sci. Instrum. 66, 4073–4080 (1995).
[CrossRef]

1994 (2)

1993 (1)

S. R. Chinn, E. A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumam, W. G. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1983 (1)

M. Ohtsu, H. Fukuda, T. Tako, H. Tsuchida, “Estimation of the ultimate frequency stability of semiconductor lasers,” Jpn. J. Appl. Phys. 22, 1157–1166 (1983).
[CrossRef]

1982 (2)

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1982).

Y. Noguchi, Y. Teramachi, T. Musha, “Correlation between frequency fluctuations of a quartz oscillator and temperature fluctuations,” Jpn. J. Appl. Phys. 21, 61–66 (1982).
[CrossRef]

Akatsuka, T.

B. Devaraji, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: Laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

Anndo, N.

Boggs, B.

Chan, K. P.

B. Devaraji, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: Laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

Chinn, S. R.

S. R. Chinn, E. A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
[CrossRef]

Devaraji, B.

B. Devaraji, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: Laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

Devaux, F.

Dobre, G. M.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3, 12–20 (1998).
[CrossRef] [PubMed]

Docchio, F.

E. Gelmini, U. Minoni, F. Docchio, “A tunable, double-wavelength heterodyne detection interferometer with frequency-locked diode-pumped Nd:YAG sources for absolute measurements,” Rev. Sci. Instrum. 66, 4073–4080 (1995).
[CrossRef]

Eisenstein, G.

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1982).

Endo, M.

M. Sato, Y. Ikeda, M. Endo, S. Fukuda, N. Tanno, “Phase-drift suppression in heterodyne detection using coherent light source,” Opt. Rev. 8, 37–42 (2000).
[CrossRef]

M. Sato, M. Endo, N. Tanno, “Phase-drift suppression method using higher order harmonics in heterodyne detection,” Opt. Rev. 7, 462–467 (2000).
[CrossRef]

Fernandez, A. D.

Fittinghoff, D. N.

Fitzke, F. W.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3, 12–20 (1998).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumam, W. G. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fukuda, H.

M. Ohtsu, H. Fukuda, T. Tako, H. Tsuchida, “Estimation of the ultimate frequency stability of semiconductor lasers,” Jpn. J. Appl. Phys. 22, 1157–1166 (1983).
[CrossRef]

Fukuda, S.

M. Sato, Y. Ikeda, M. Endo, S. Fukuda, N. Tanno, “Phase-drift suppression in heterodyne detection using coherent light source,” Opt. Rev. 8, 37–42 (2000).
[CrossRef]

Funaba, T.

Gelmini, E.

E. Gelmini, U. Minoni, F. Docchio, “A tunable, double-wavelength heterodyne detection interferometer with frequency-locked diode-pumped Nd:YAG sources for absolute measurements,” Rev. Sci. Instrum. 66, 4073–4080 (1995).
[CrossRef]

Grener, C.

Haskell, R. C.

Hoeling, B. M.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumam, W. G. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, E.

Ichimura, T.

Ikari, T.

T. Ikari, M. Sato, N. Tanno, “Compact optical coherence tomography system using partially delayed Fizeau interferometer,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), CTuY.

Ikeda, Y.

M. Sato, Y. Ikeda, M. Endo, S. Fukuda, N. Tanno, “Phase-drift suppression in heterodyne detection using coherent light source,” Opt. Rev. 8, 37–42 (2000).
[CrossRef]

Inaba, H.

B. Devaraji, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: Laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

Ito, H.

Izatt, J. A.

J. A. Izatt, M. D. Kulkarrni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Jackson, D. A.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3, 12–20 (1998).
[CrossRef] [PubMed]

Kaminow, I. P.

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1982).

Kobayashi, K.

J. A. Izatt, M. D. Kulkarrni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1991), p. 241.

Kulkarrni, M. D.

J. A. Izatt, M. D. Kulkarrni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Lantz, E.

Le Tolguenec, G.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumam, W. G. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Millard, A. C.

Minoni, U.

E. Gelmini, U. Minoni, F. Docchio, “A tunable, double-wavelength heterodyne detection interferometer with frequency-locked diode-pumped Nd:YAG sources for absolute measurements,” Rev. Sci. Instrum. 66, 4073–4080 (1995).
[CrossRef]

Mossberg, T. W.

Muller, M.

Musha, T.

Y. Noguchi, Y. Teramachi, T. Musha, “Correlation between frequency fluctuations of a quartz oscillator and temperature fluctuations,” Jpn. J. Appl. Phys. 21, 61–66 (1982).
[CrossRef]

Myers, W. R.

Narayana Rao, D.

Nirmal Kumar, V.

Noguchi, Y.

Y. Noguchi, Y. Teramachi, T. Musha, “Correlation between frequency fluctuations of a quartz oscillator and temperature fluctuations,” Jpn. J. Appl. Phys. 21, 61–66 (1982).
[CrossRef]

Odagiri, Y.

Ohtsu, M.

M. Ohtsu, H. Fukuda, T. Tako, H. Tsuchida, “Estimation of the ultimate frequency stability of semiconductor lasers,” Jpn. J. Appl. Phys. 22, 1157–1166 (1983).
[CrossRef]

Onodera, K.

M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
[CrossRef]

Petersent, D. C.

Podoleanu, A. G.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3, 12–20 (1998).
[CrossRef] [PubMed]

Puliafito, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumam, W. G. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1944), pp. 452–454.

Sato, M.

M. Sato, M. Endo, N. Tanno, “Phase-drift suppression method using higher order harmonics in heterodyne detection,” Opt. Rev. 7, 462–467 (2000).
[CrossRef]

M. Sato, Y. Ikeda, M. Endo, S. Fukuda, N. Tanno, “Phase-drift suppression in heterodyne detection using coherent light source,” Opt. Rev. 8, 37–42 (2000).
[CrossRef]

M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
[CrossRef]

T. Ikari, M. Sato, N. Tanno, “Compact optical coherence tomography system using partially delayed Fizeau interferometer,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), CTuY.

Schumam, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumam, W. G. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seeger, M.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3, 12–20 (1998).
[CrossRef] [PubMed]

Seino, K.

M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
[CrossRef]

Sivak, M. V.

J. A. Izatt, M. D. Kulkarrni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Squier, J. A.

Stulz, L. W.

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1982).

Swanson, E. A.

S. R. Chinn, E. A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumam, W. G. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Takeda, M.

Tako, T.

M. Ohtsu, H. Fukuda, T. Tako, H. Tsuchida, “Estimation of the ultimate frequency stability of semiconductor lasers,” Jpn. J. Appl. Phys. 22, 1157–1166 (1983).
[CrossRef]

Tanno, N.

M. Sato, Y. Ikeda, M. Endo, S. Fukuda, N. Tanno, “Phase-drift suppression in heterodyne detection using coherent light source,” Opt. Rev. 8, 37–42 (2000).
[CrossRef]

M. Sato, M. Endo, N. Tanno, “Phase-drift suppression method using higher order harmonics in heterodyne detection,” Opt. Rev. 7, 462–467 (2000).
[CrossRef]

M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
[CrossRef]

T. Funaba, N. Tanno, H. Ito, “Multimode laser reflectometer with a multichannel wavelength detector and its application,” Appl. Opt. 36, 8919–8928 (1997).
[CrossRef]

N. Tanno, T. Ichimura, T. Funaba, N. Anndo, Y. Odagiri, “Optical multimode frequency-domain reflectometer,” Opt. Lett. 19, 587–589 (1994).
[CrossRef]

T. Ikari, M. Sato, N. Tanno, “Compact optical coherence tomography system using partially delayed Fizeau interferometer,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), CTuY.

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1944), pp. 452–454.

Teramachi, Y.

Y. Noguchi, Y. Teramachi, T. Musha, “Correlation between frequency fluctuations of a quartz oscillator and temperature fluctuations,” Jpn. J. Appl. Phys. 21, 61–66 (1982).
[CrossRef]

Tsuchida, H.

M. Ohtsu, H. Fukuda, T. Tako, H. Tsuchida, “Estimation of the ultimate frequency stability of semiconductor lasers,” Jpn. J. Appl. Phys. 22, 1157–1166 (1983).
[CrossRef]

Ungersma, S. E.

Usa, M.

B. Devaraji, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: Laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

Wang, H.-W.

J. A. Izatt, M. D. Kulkarrni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Wang, R.

Wang, T.

Webb, D. J.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3, 12–20 (1998).
[CrossRef] [PubMed]

Williams, M. E.

Wilson, K. R.

Wiseman, P. W.

Yamamoto, H.

Appl. Opt. (5)

Electron. Lett. (1)

S. R. Chinn, E. A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett. 29, 2025–2027 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1982).

IEEE J. Sel. Top. Quantum Electron. (2)

J. A. Izatt, M. D. Kulkarrni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

B. Devaraji, M. Usa, K. P. Chan, T. Akatsuka, H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: Laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008–1016 (1996).
[CrossRef]

J. Biomed. Opt. (1)

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3, 12–20 (1998).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (2)

M. Ohtsu, H. Fukuda, T. Tako, H. Tsuchida, “Estimation of the ultimate frequency stability of semiconductor lasers,” Jpn. J. Appl. Phys. 22, 1157–1166 (1983).
[CrossRef]

Y. Noguchi, Y. Teramachi, T. Musha, “Correlation between frequency fluctuations of a quartz oscillator and temperature fluctuations,” Jpn. J. Appl. Phys. 21, 61–66 (1982).
[CrossRef]

Opt. Commun. (1)

M. Sato, K. Seino, K. Onodera, N. Tanno, “Phase-drift suppression using harmonics in heterodyne detection and its application to optical coherence tomography,” Opt. Commun. 184, 95–104 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Rev. (2)

M. Sato, Y. Ikeda, M. Endo, S. Fukuda, N. Tanno, “Phase-drift suppression in heterodyne detection using coherent light source,” Opt. Rev. 8, 37–42 (2000).
[CrossRef]

M. Sato, M. Endo, N. Tanno, “Phase-drift suppression method using higher order harmonics in heterodyne detection,” Opt. Rev. 7, 462–467 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

E. Gelmini, U. Minoni, F. Docchio, “A tunable, double-wavelength heterodyne detection interferometer with frequency-locked diode-pumped Nd:YAG sources for absolute measurements,” Rev. Sci. Instrum. 66, 4073–4080 (1995).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schumam, W. G. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (3)

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1991), p. 241.

T. Ikari, M. Sato, N. Tanno, “Compact optical coherence tomography system using partially delayed Fizeau interferometer,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), CTuY.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1944), pp. 452–454.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dependence of the RSD of the CSI on the modulation index, simulated by sinusoidal phase modulation.

Fig. 2
Fig. 2

Dependence of the RSD of the CSI on the modulation index, simulated by sinusoidal phase modulation with intensity fluctuations of the light source in C S,1–2.

Fig. 3
Fig. 3

Dependence of the RSD of the CSI on the modulation index, simulated by sinusoidal phase modulation with intensity fluctuations of the light source in C S,1–8.

Fig. 4
Fig. 4

Calculated results of the square root of the Allan variance of the fluctuating phase for an interferometer: Curve A is due to the fluctuating frequency in the SLD, B is due to the fluctuating temperature with a stability of 10-6 K, C is due to the fluctuating frequency and fluctuating temperature with a stability of 10-6 K, D is due to the fluctuating temperature with a stability of 0.1 K; E is due to the fluctuating frequency and fluctuating temperature with a stability of 0.1 K. Curves F–J mean the same as curves A–E but for a halogen lamp.

Fig. 5
Fig. 5

Calculated results of the PSD of the fluctuating phase for an interferometer: Curve A is due to the fluctuating frequency in the SLD, B is due to the fluctuating temperature with a stability of 10-6 K, C is due to the fluctuating frequency and fluctuating temperature with a stability of 10-6 K, D is due to the fluctuating temperature with a stability of 0.1 K, and E is due to the fluctuating frequency and fluctuating temperature with a stability of 0.1 K. Curves F to J mean the same as curves A–E but for a halogen lamp.

Fig. 6
Fig. 6

Dependence of the CSI on the modulation indexes in C 1–2 and C 1–6 with a halogen lamp.

Fig. 7
Fig. 7

Dependence of the RSD of the CSI on the modulation index in (a) C 1 and C 1–2, and (b) C 1 and C 1–6 with a halogen lamp.

Tables (1)

Tables Icon

Table 1 Comparison of RSDs between Incoherent and Low-Coherence Light Sources

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Et=A0+atexpi2πν0t+φt+c.c.,
νt=ν0+12πdφdtν0+δνt,
ytδνtν0=12πν0dφdt.
σy2τ limN1N-1k=1N-1yk+1¯-yk¯22,
Iν=1ν-ν02+Δν/2,
σy2τ=δν2ν02=aτ, a=Δν2πν02,
Syf=2a.
τS=nS0+δnSLS0+δLSc, τR=nR0+δnRLR0+δLRc,
ISHBt=ReES*t-τS ERt-τR=ASAR cosϕmt+2πν0τS-τR+φRt- τR-φSt-τS =ASAR cosϕmt+ ϕdt,
ϕdt=k0LS0δnS-LR0δnR+k0nS0δLS-nR0δLR+φRt-nR0LR0+δnRLR0+ δLRnR0c-φSt-nS0LS0+δnSLS0+δLSnS0c k0Lδn+k0nδL+k0nL δνν0,
ϕdt=k0nL 1nδnδT+1LδLδT δT+δνν0.
ϕdfτ=nk0Laτ,
Syff= nk0L22a,
STf=K1f-2K2/Hz, K1=3.0×10-13.
ϕdTτ=2π K161ν0δνδTnk0Lτ, 1ν0δνδT1nδnδT+1LδLδT,
SyTf= 1ν0δνδT nk0L2K1f-2.
ϕdτ=nk0Laτ+4π2K161ν0δνδT2τ1/2.
Syf=nk0L22a+1ν0δνδT2K1f-2.
ISHBt=I0 cosϕ0 sin ωpt+ϕdt,
ISCSϕ0, ϕd2I0i=1INTn+1/2 sin2ϕdJ2i-12ϕ0+j=1INTn/2 cos2ϕdJ2j2ϕ01/2,
i=1INTn+1/2 J2i-12ϕ0=j=1INTn/2 J2j2ϕ0,
ISCSϕ0=2I0i=1INTn+1/2 J2i-12ϕ01/2, or 2I0j=1INTn/2 J2j2ϕ01/2.
RSDLS=iM-im23i0,
RSD=1+iM-im212i02- g2ϕdfϕdϕddϕ-- gϕdfϕdϕddϕ21/2- gϕdfϕdϕddϕ,
gϕd=i=1INTn+1/2 sin2ϕdJ2i-12ϕ0+j=1INTn/2 cos2ϕdJ2j2ϕ01/2,
fϕdϕd=12π0ϕd2π=0 others,
ϕdt=1τMtt+τM ϕdtdt.

Metrics