Abstract

A novel technique of lidar for atmospheric gas detection by use of stimulated Raman gain spectroscopy without any tunable laser is proposed. Detection sensitivity and detectable range are estimated on the basis of the lidar equation for CO2, CH4, and H2 in the atmosphere. The feasibility study clearly shows that the technique has a potential for application to lidar and that, in addition, the construction of the system is simpler than those of traditional differential absorption lidars.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kobayashi, “Techniques for laser remote sensing of the environment,” Remote Sens. Rev. 3, 1–56 (1987).
    [CrossRef]
  2. R. Measures, Laser Remote Sensing (Wiley, New York, 1984).
  3. N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simov, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. 3, 197–208 (1967).
    [CrossRef]
  4. J. J. Ottusch, D. A. Rockwell, “Measurement of Raman Gain Coefficients of Hydro-gen,Deuterium, and Methane,” IEEE J. of Quantum Electron. 24, 2076–2080 (1988).
    [CrossRef]
  5. H. Komine, E. A. Stappaerts, “Efficient higher-Stokes-order Raman conversion in molecular gases,” Opt. Lett. 4, 398–400 (1979).
    [CrossRef] [PubMed]
  6. W. K. Bischel, M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986).
    [CrossRef]
  7. S. Maeda, Y. Adachi, R. Igarashi, “New spectroscopy and its applications: coherent anti-Stokes Raman spectroscopy (CARS),” Bunko Kenkyu 28, 353–366 (1979). (in Japanese).
    [CrossRef]
  8. Y. Oki, N. Kawada, Y. Abe, M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161, 57–62 (1999).
    [CrossRef]
  9. Y. Oki, S. Nakazono, Y. Nonaka, M. Maeda, “Sensitive H2 detection by use of thermal-lens Raman spectroscopy without a tunable laser,” Opt. Lett. 25, 1040–1042 (2000).
    [CrossRef]
  10. Y. Oki, N. Kawada, T. Ogawa, Y. Abe, M. Maeda, “Sensitive H2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36, 1172–1174 (1997).
    [CrossRef]
  11. O. Uchino, M. Maeda, M. Hirono, “Applications of excimer lasers to laser-radar observations of the upper atmosphere,” IEEE J. Quantum Electron. 15, 1094–1106 (1979).
    [CrossRef]
  12. M. Uchiumi, M. Maeda, “Differential absorption lidars for measuring atmospheric minor constituents related to earth warming,” Rev. Laser Eng. 22, 448–459 (1993). (in Japanese).
    [CrossRef]
  13. R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
    [CrossRef]

2000 (1)

1999 (1)

Y. Oki, N. Kawada, Y. Abe, M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161, 57–62 (1999).
[CrossRef]

1997 (1)

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, M. Maeda, “Sensitive H2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36, 1172–1174 (1997).
[CrossRef]

1993 (1)

M. Uchiumi, M. Maeda, “Differential absorption lidars for measuring atmospheric minor constituents related to earth warming,” Rev. Laser Eng. 22, 448–459 (1993). (in Japanese).
[CrossRef]

1988 (1)

J. J. Ottusch, D. A. Rockwell, “Measurement of Raman Gain Coefficients of Hydro-gen,Deuterium, and Methane,” IEEE J. of Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

1987 (1)

T. Kobayashi, “Techniques for laser remote sensing of the environment,” Remote Sens. Rev. 3, 1–56 (1987).
[CrossRef]

1986 (1)

1979 (3)

S. Maeda, Y. Adachi, R. Igarashi, “New spectroscopy and its applications: coherent anti-Stokes Raman spectroscopy (CARS),” Bunko Kenkyu 28, 353–366 (1979). (in Japanese).
[CrossRef]

O. Uchino, M. Maeda, M. Hirono, “Applications of excimer lasers to laser-radar observations of the upper atmosphere,” IEEE J. Quantum Electron. 15, 1094–1106 (1979).
[CrossRef]

H. Komine, E. A. Stappaerts, “Efficient higher-Stokes-order Raman conversion in molecular gases,” Opt. Lett. 4, 398–400 (1979).
[CrossRef] [PubMed]

1974 (1)

R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

1967 (1)

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simov, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. 3, 197–208 (1967).
[CrossRef]

Abe, Y.

Y. Oki, N. Kawada, Y. Abe, M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161, 57–62 (1999).
[CrossRef]

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, M. Maeda, “Sensitive H2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36, 1172–1174 (1997).
[CrossRef]

Adachi, Y.

S. Maeda, Y. Adachi, R. Igarashi, “New spectroscopy and its applications: coherent anti-Stokes Raman spectroscopy (CARS),” Bunko Kenkyu 28, 353–366 (1979). (in Japanese).
[CrossRef]

Bischel, W. K.

Bloembergen, N.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simov, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. 3, 197–208 (1967).
[CrossRef]

Bret, G.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simov, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. 3, 197–208 (1967).
[CrossRef]

Dyer, M. J.

Hirono, M.

O. Uchino, M. Maeda, M. Hirono, “Applications of excimer lasers to laser-radar observations of the upper atmosphere,” IEEE J. Quantum Electron. 15, 1094–1106 (1979).
[CrossRef]

Igarashi, R.

S. Maeda, Y. Adachi, R. Igarashi, “New spectroscopy and its applications: coherent anti-Stokes Raman spectroscopy (CARS),” Bunko Kenkyu 28, 353–366 (1979). (in Japanese).
[CrossRef]

Kawada, N.

Y. Oki, N. Kawada, Y. Abe, M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161, 57–62 (1999).
[CrossRef]

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, M. Maeda, “Sensitive H2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36, 1172–1174 (1997).
[CrossRef]

Kobayashi, T.

T. Kobayashi, “Techniques for laser remote sensing of the environment,” Remote Sens. Rev. 3, 1–56 (1987).
[CrossRef]

Komine, H.

Lallemand, P.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simov, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. 3, 197–208 (1967).
[CrossRef]

Maeda, M.

Y. Oki, S. Nakazono, Y. Nonaka, M. Maeda, “Sensitive H2 detection by use of thermal-lens Raman spectroscopy without a tunable laser,” Opt. Lett. 25, 1040–1042 (2000).
[CrossRef]

Y. Oki, N. Kawada, Y. Abe, M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161, 57–62 (1999).
[CrossRef]

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, M. Maeda, “Sensitive H2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36, 1172–1174 (1997).
[CrossRef]

M. Uchiumi, M. Maeda, “Differential absorption lidars for measuring atmospheric minor constituents related to earth warming,” Rev. Laser Eng. 22, 448–459 (1993). (in Japanese).
[CrossRef]

O. Uchino, M. Maeda, M. Hirono, “Applications of excimer lasers to laser-radar observations of the upper atmosphere,” IEEE J. Quantum Electron. 15, 1094–1106 (1979).
[CrossRef]

Maeda, S.

S. Maeda, Y. Adachi, R. Igarashi, “New spectroscopy and its applications: coherent anti-Stokes Raman spectroscopy (CARS),” Bunko Kenkyu 28, 353–366 (1979). (in Japanese).
[CrossRef]

Measures, R.

R. Measures, Laser Remote Sensing (Wiley, New York, 1984).

Nakazono, S.

Nonaka, Y.

Ogawa, T.

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, M. Maeda, “Sensitive H2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36, 1172–1174 (1997).
[CrossRef]

Oki, Y.

Y. Oki, S. Nakazono, Y. Nonaka, M. Maeda, “Sensitive H2 detection by use of thermal-lens Raman spectroscopy without a tunable laser,” Opt. Lett. 25, 1040–1042 (2000).
[CrossRef]

Y. Oki, N. Kawada, Y. Abe, M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161, 57–62 (1999).
[CrossRef]

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, M. Maeda, “Sensitive H2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36, 1172–1174 (1997).
[CrossRef]

Ottusch, J. J.

J. J. Ottusch, D. A. Rockwell, “Measurement of Raman Gain Coefficients of Hydro-gen,Deuterium, and Methane,” IEEE J. of Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

Pine, A.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simov, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. 3, 197–208 (1967).
[CrossRef]

Rockwell, D. A.

J. J. Ottusch, D. A. Rockwell, “Measurement of Raman Gain Coefficients of Hydro-gen,Deuterium, and Methane,” IEEE J. of Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

Schotland, R. M.

R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

Simov, P.

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simov, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. 3, 197–208 (1967).
[CrossRef]

Stappaerts, E. A.

Uchino, O.

O. Uchino, M. Maeda, M. Hirono, “Applications of excimer lasers to laser-radar observations of the upper atmosphere,” IEEE J. Quantum Electron. 15, 1094–1106 (1979).
[CrossRef]

Uchiumi, M.

M. Uchiumi, M. Maeda, “Differential absorption lidars for measuring atmospheric minor constituents related to earth warming,” Rev. Laser Eng. 22, 448–459 (1993). (in Japanese).
[CrossRef]

Bunko Kenkyu (1)

S. Maeda, Y. Adachi, R. Igarashi, “New spectroscopy and its applications: coherent anti-Stokes Raman spectroscopy (CARS),” Bunko Kenkyu 28, 353–366 (1979). (in Japanese).
[CrossRef]

IEEE J. of Quantum Electron. (1)

J. J. Ottusch, D. A. Rockwell, “Measurement of Raman Gain Coefficients of Hydro-gen,Deuterium, and Methane,” IEEE J. of Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

IEEE J. Quantum Electron. (2)

N. Bloembergen, G. Bret, P. Lallemand, A. Pine, P. Simov, “Controlled stimulated Raman amplification and oscillation in hydrogen gas,” IEEE J. Quantum Electron. 3, 197–208 (1967).
[CrossRef]

O. Uchino, M. Maeda, M. Hirono, “Applications of excimer lasers to laser-radar observations of the upper atmosphere,” IEEE J. Quantum Electron. 15, 1094–1106 (1979).
[CrossRef]

J. Appl. Meteorol. (1)

R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, M. Maeda, “Sensitive H2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36, 1172–1174 (1997).
[CrossRef]

Opt. Commun. (1)

Y. Oki, N. Kawada, Y. Abe, M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161, 57–62 (1999).
[CrossRef]

Opt. Lett. (2)

Remote Sens. Rev. (1)

T. Kobayashi, “Techniques for laser remote sensing of the environment,” Remote Sens. Rev. 3, 1–56 (1987).
[CrossRef]

Rev. Laser Eng. (1)

M. Uchiumi, M. Maeda, “Differential absorption lidars for measuring atmospheric minor constituents related to earth warming,” Rev. Laser Eng. 22, 448–459 (1993). (in Japanese).
[CrossRef]

Other (1)

R. Measures, Laser Remote Sensing (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the SRGS setup without a tunable laser. Pump wave: ω p ; Stokes wave: ω s = ω p - ω R . ω R is the Raman shift frequency.

Fig. 2
Fig. 2

Schematic of the SRGS lidar system. On condition: The Stokes wave (ω s ) combined with the pump wave (ω p ) is transmitted in the atmosphere. Off condition: Only the Stokes wave (ω s ) is transmitted.

Fig. 3
Fig. 3

SRGS experimental setup for evaluation of medium-dependent gain coefficient γ. Pump input to Raman shifter (1000 mm long): 40 mJ. Pump input to sample gas cell (2400 mm long): 120 mJ.

Fig. 4
Fig. 4

SRGS gain calculation for CO2 in atmosphere. Effect of unfocused Gaussian pump beam with 5-mm diameter at 1/e 2 of its intensity and 0.068-mrad divergence angle, and effect of focused beam with different focusing conditions.

Fig. 5
Fig. 5

Detectable ranges of the SRGS lidar for different gases with unfocused pump-beam condition. (a) CO2, (b) CH4, and (c) H2 gases in atmosphere.

Fig. 6
Fig. 6

Detectable range of the SRGS lidar for CO2 in atmosphere. Unfocused pump beam: 5-mm diameter and 0.068-mrad divergence angle. Focused pump beam: 30-mm diameter before focusing.

Tables (1)

Tables Icon

Table 1 Experimental Parameters of CO2, CH4, and H2 Gases

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ΔIszIs0gz,
g=γIp,
PR=KGRT2RβR2R2,
Ton2R=exp0R-2α+gdr,
Toff2R=exp0R -2αdr.
δNmNm=1γNmRR+L IpdRm ×i=12j=12nsiRj+nB+ndnsi2Rj1/2,
gz=γ 0R IpRnRdR,

Metrics