Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Convergence rates for iterative vector space projection methods for control of two deformable mirrors for compensation of both amplitude and phase fluctuations

Not Accessible

Your library or personal account may give you access

Abstract

The control of two deformable mirrors for compensation of time-varying fluctuations in the complex field that results from wave propagation through a turbulent medium is considered. Iterative vector space projection methods are utilized to determine the control commands to be applied to the two deformable mirrors. Convergence of the iterative algorithm is accelerated when the algorithm is initialized, at each measurement period, with the values for the phase commands obtained from the previous measurement period. Furthermore, it is found that, if the sample frequency is sufficiently greater than the Greenwood frequency, then only a single iterative step at each measurement period is required to obtain good compensation of both amplitude and phase fluctuations.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved