Abstract

We describe and experimentally demonstrate a novel (to our knowledge) surface profiling technique, for which we propose the term closed-loop optical coherence topography. This technique is a scanning beam, servo-locked variation of low-coherence interferometry. It allows for the sub-wavelength-resolution tracking of a weakly scattering macroscopic-scale surface, with the surface profile being directly output by the controlling electronics. The absence of significant real-time computational overhead makes the technique well suited to high-speed tracking. The use of a micrometer-scale coherence gate efficiently suppresses signals arising from structures not associated with the surface. These features make the technique particularly well suited to real-time surface profiling of in vivo, macroscopic biological surfaces.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Creath, in Progress in Optics: Volume XXVI, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Chap. V.
  2. L. Deck, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
    [CrossRef] [PubMed]
  3. J. P. Lesso, A. J. Duncan, W. Sibbett, M. J. Padgett, “Surface profilometry based on polarization analysis,” Opt. Lett. 23, 1800–1802 (1998).
    [CrossRef]
  4. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
    [CrossRef] [PubMed]
  5. G. Häusler, M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  6. A. Bartoli, P. Poggi, F. Quercioli, B. Tiribilli, “Fast one-dimensional profilometer with a compact disk pickup,” Appl. Opt. 40, 1044–1048 (2001).
    [CrossRef]
  7. D. C. Leiner, D. T. Moore, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705 (1978).
    [CrossRef] [PubMed]
  8. T. Suzuki, O. Sasaki, T. Maruyama, “Phase-locked laser diode interferometry for surface profile measurement,” Appl. Opt. 28, 4407–4410 (1989).
    [CrossRef] [PubMed]
  9. D. K. Hamilton, H. J. Matthews, “The confocal interference microscope as a surface profilometer,” Optik (Stuttgart) 71, 31–34 (1985).
  10. H. J. Matthews, D. K. Hamilton, C. J. R. Sheppard, “Surface profiling by phase-locked interferometry,” Appl. Opt. 25, 2372–2374 (1986).
    [CrossRef] [PubMed]
  11. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
    [CrossRef]
  12. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
    [CrossRef] [PubMed]
  13. D. Silva, A. V. Zvyagin, D. D. Sampson, “Closed loop optical coherence tomography for high speed profiling of macroscopic biological surfaces,” in Proceedings of the 12th Conference of the Australian Optical Society, (Australian Optical Society, ISBN 0-7340-1737-5), p. 8, Sydney, (1999).
  14. J. D. McKinney, M. A. Webster, K. J. Webb, A. M. Weiner, “Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source,” Opt. Lett. 25, 4–6 (2000).
    [CrossRef]
  15. S. R. Chinn, E. A. Swanson, “Multi-layer optical readout using direct of interferometric detection and broad-bandwidth light sources,” Opt. Memory Neural Networks 5, 197–217 (1996).
  16. See, for example, A. A. Sa., Model AA.DTS.X-400, at http://www.a-a.fr .
  17. S. Markos, “Refractive Surgery and Optical Aberrations,” Opt. Photon. News 12, 22–25, (2001).
    [CrossRef]

2001 (2)

2000 (1)

1998 (2)

G. Häusler, M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

J. P. Lesso, A. J. Duncan, W. Sibbett, M. J. Padgett, “Surface profilometry based on polarization analysis,” Opt. Lett. 23, 1800–1802 (1998).
[CrossRef]

1996 (2)

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

S. R. Chinn, E. A. Swanson, “Multi-layer optical readout using direct of interferometric detection and broad-bandwidth light sources,” Opt. Memory Neural Networks 5, 197–217 (1996).

1994 (1)

1993 (1)

1992 (1)

1989 (1)

1986 (1)

1985 (1)

D. K. Hamilton, H. J. Matthews, “The confocal interference microscope as a surface profilometer,” Optik (Stuttgart) 71, 31–34 (1985).

1978 (1)

D. C. Leiner, D. T. Moore, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705 (1978).
[CrossRef] [PubMed]

Bartoli, A.

Chinn, S. R.

S. R. Chinn, E. A. Swanson, “Multi-layer optical readout using direct of interferometric detection and broad-bandwidth light sources,” Opt. Memory Neural Networks 5, 197–217 (1996).

Creath, K.

K. Creath, in Progress in Optics: Volume XXVI, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Chap. V.

Deck, L.

Duncan, A. J.

Fujimoto, J. G.

Hamilton, D. K.

H. J. Matthews, D. K. Hamilton, C. J. R. Sheppard, “Surface profiling by phase-locked interferometry,” Appl. Opt. 25, 2372–2374 (1986).
[CrossRef] [PubMed]

D. K. Hamilton, H. J. Matthews, “The confocal interference microscope as a surface profilometer,” Optik (Stuttgart) 71, 31–34 (1985).

Häusler, G.

G. Häusler, M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Hee, M. R.

Huang, D.

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Leiner, D. C.

D. C. Leiner, D. T. Moore, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705 (1978).
[CrossRef] [PubMed]

Lesso, J. P.

Lin, C. P.

Lindner, M. W.

G. Häusler, M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Markos, S.

S. Markos, “Refractive Surgery and Optical Aberrations,” Opt. Photon. News 12, 22–25, (2001).
[CrossRef]

Maruyama, T.

Matthews, H. J.

H. J. Matthews, D. K. Hamilton, C. J. R. Sheppard, “Surface profiling by phase-locked interferometry,” Appl. Opt. 25, 2372–2374 (1986).
[CrossRef] [PubMed]

D. K. Hamilton, H. J. Matthews, “The confocal interference microscope as a surface profilometer,” Optik (Stuttgart) 71, 31–34 (1985).

McKinney, J. D.

Moore, D. T.

D. C. Leiner, D. T. Moore, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705 (1978).
[CrossRef] [PubMed]

Padgett, M. J.

Poggi, P.

Puliafito, C. A.

Quercioli, F.

Sampson, D. D.

D. Silva, A. V. Zvyagin, D. D. Sampson, “Closed loop optical coherence tomography for high speed profiling of macroscopic biological surfaces,” in Proceedings of the 12th Conference of the Australian Optical Society, (Australian Optical Society, ISBN 0-7340-1737-5), p. 8, Sydney, (1999).

Sasaki, O.

Schuman, J. S.

Sheppard, C. J. R.

Sibbett, W.

Silva, D.

D. Silva, A. V. Zvyagin, D. D. Sampson, “Closed loop optical coherence tomography for high speed profiling of macroscopic biological surfaces,” in Proceedings of the 12th Conference of the Australian Optical Society, (Australian Optical Society, ISBN 0-7340-1737-5), p. 8, Sydney, (1999).

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Suzuki, T.

Swanson, E. A.

Tiribilli, B.

Wang, H.-W.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Webb, K. J.

Webster, M. A.

Weiner, A. M.

Zvyagin, A. V.

D. Silva, A. V. Zvyagin, D. D. Sampson, “Closed loop optical coherence tomography for high speed profiling of macroscopic biological surfaces,” in Proceedings of the 12th Conference of the Australian Optical Society, (Australian Optical Society, ISBN 0-7340-1737-5), p. 8, Sydney, (1999).

Appl. Opt. (4)

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

J. Biomed. Opt. (1)

G. Häusler, M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Opt. Lett. (4)

Opt. Memory Neural Networks (1)

S. R. Chinn, E. A. Swanson, “Multi-layer optical readout using direct of interferometric detection and broad-bandwidth light sources,” Opt. Memory Neural Networks 5, 197–217 (1996).

Opt. Photon. News (1)

S. Markos, “Refractive Surgery and Optical Aberrations,” Opt. Photon. News 12, 22–25, (2001).
[CrossRef]

Optik (Stuttgart) (1)

D. K. Hamilton, H. J. Matthews, “The confocal interference microscope as a surface profilometer,” Optik (Stuttgart) 71, 31–34 (1985).

Rev. Sci. Instrum. (1)

D. C. Leiner, D. T. Moore, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705 (1978).
[CrossRef] [PubMed]

Other (3)

K. Creath, in Progress in Optics: Volume XXVI, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Chap. V.

See, for example, A. A. Sa., Model AA.DTS.X-400, at http://www.a-a.fr .

D. Silva, A. V. Zvyagin, D. D. Sampson, “Closed loop optical coherence tomography for high speed profiling of macroscopic biological surfaces,” in Proceedings of the 12th Conference of the Australian Optical Society, (Australian Optical Society, ISBN 0-7340-1737-5), p. 8, Sydney, (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of a closed-loop OCT. OPs, OPr denote the optical path in the sample and reference arms, respectively; Δγ denotes the coherence-gate width.

Fig. 2
Fig. 2

Schematic diagram of experimental setup. BBS—broadband source; GM—galvanometer-mounted mirror; ID—iris diaphragm; BS—beamsplitter; PD—photodetector; M—plane mirror; He–Ne—helium–neon laser; LIA—lock-in amplifier; In, R, Out—input, reference, output terminals of the lock-in amplifier, respectively; PID—proportional-integral-differential controller.

Fig. 3
Fig. 3

Optical-path difference versus time before and after closing the servo control loop. Scale at right shows optical-path difference scaled by the mean wavelength of the source.

Fig. 4
Fig. 4

Detected control signal (upper curve) and signal at photodetector PD2 (lower curve) versus time as the probe beam scans across the tilted surface of the compact disk. AU—arbitrary units.

Fig. 5
Fig. 5

Measured line profile of the surface of a tilted compact disk using closed-loop OCT (solid curve) and optical coherence tomography (open circles).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

id  R+12+|γΔz|Rcos2k0Δz,
s  ξRd|γ|dΔzmΔzm=Δz cos2k0Δz-2k0|γΔz|sin2k0Δz.
s  ξR |γΔz|sin2k0Δz.

Metrics