Abstract

We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. E. N. Glezer, E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
    [CrossRef]
  3. C. B. Schaffer, A. Brodeur, J. F. Garcia, E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
    [CrossRef]
  4. K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
    [CrossRef]
  5. D. Homoelle, S. Wielandy, A. Gaeta, N. F. Borrelli, C. Smith, “Infrared photosensitivity in slica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311–1313 (1999).
    [CrossRef]
  6. L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
    [CrossRef]
  7. H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
    [CrossRef]
  8. A. M. Streltsov, N. F. Borrelli, “Fabrication and analysis of directional coupler written in glass with femtosecond pulses,” Opt. Lett. 26, 42–43 (2001).
    [CrossRef]
  9. K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling: state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
    [CrossRef]
  10. P. Oberson, B. Gisin, B. Huttner, N. Gisin, “Refracted near-filed measurements of refractive index and geometry on silica-on-silicon integrated waveguides,” Appl. Opt. 37, 7268–7272 (1998).
    [CrossRef]
  11. D. P. Davé, T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000).
    [CrossRef]
  12. D. P. Davé, T. Akkin, T. E. Milner, H. G. Rylander, “Phase-sensitive frequency-multiplexed optical low-coherence reflectometry,” Opt. Commun. 193, 39–43 (2001).
    [CrossRef]

2001 (3)

2000 (1)

1999 (2)

D. Homoelle, S. Wielandy, A. Gaeta, N. F. Borrelli, C. Smith, “Infrared photosensitivity in slica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311–1313 (1999).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

1998 (1)

1997 (2)

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

E. N. Glezer, E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[CrossRef]

1996 (1)

1989 (1)

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling: state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Akkin, T.

D. P. Davé, T. Akkin, T. E. Milner, H. G. Rylander, “Phase-sensitive frequency-multiplexed optical low-coherence reflectometry,” Opt. Commun. 193, 39–43 (2001).
[CrossRef]

Baines, J. G. N.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling: state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Borrelli, N. F.

Brodeur, A.

Davé, D. P.

D. P. Davé, T. Akkin, T. E. Milner, H. G. Rylander, “Phase-sensitive frequency-multiplexed optical low-coherence reflectometry,” Opt. Commun. 193, 39–43 (2001).
[CrossRef]

D. P. Davé, T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000).
[CrossRef]

Davis, K. M.

Franco, M.

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Gaeta, A.

Garcia, J. F.

Gisin, B.

Gisin, N.

Glezer, E. N.

E. N. Glezer, E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[CrossRef]

Hirao, K.

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[CrossRef] [PubMed]

Homoelle, D.

Huttner, B.

Inouye, H.

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Juodkazis, S.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Matsuo, S.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Mazur, E.

C. B. Schaffer, A. Brodeur, J. F. Garcia, E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
[CrossRef]

E. N. Glezer, E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[CrossRef]

Milner, T. E.

D. P. Davé, T. Akkin, T. E. Milner, H. G. Rylander, “Phase-sensitive frequency-multiplexed optical low-coherence reflectometry,” Opt. Commun. 193, 39–43 (2001).
[CrossRef]

D. P. Davé, T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000).
[CrossRef]

Misawa, H.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Mitsuyu, T.

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Miura, K.

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[CrossRef] [PubMed]

Mysyrowicz, A.

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Nishi, J.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Oberson, P.

Prade, B.

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Putland, D. E.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling: state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Qui, J.

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Raine, K. W.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling: state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Rylander, H. G.

D. P. Davé, T. Akkin, T. E. Milner, H. G. Rylander, “Phase-sensitive frequency-multiplexed optical low-coherence reflectometry,” Opt. Commun. 193, 39–43 (2001).
[CrossRef]

Schaffer, C. B.

Smith, C.

Streltsov, A. M.

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Sugimoto, N.

Sun, H. B.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Sun, K.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Suzuki, Y.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Wielandy, S.

Xu, Y.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

E. N. Glezer, E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[CrossRef]

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

J. Lightwave Technol. (1)

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling: state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Opt. Commun. (2)

D. P. Davé, T. Akkin, T. E. Milner, H. G. Rylander, “Phase-sensitive frequency-multiplexed optical low-coherence reflectometry,” Opt. Commun. 193, 39–43 (2001).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Opt. Lett. (5)

Other (1)

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the optical setup in the sample path for refractive-index profiling.

Fig. 2
Fig. 2

Two-dimensional phase profiles of the index-modified structure in a microscope slide: (a)–(c) measured with phase-sensitive OLCR; (b) and (c) gray-scale and contour maps, respectively, of a portion of (a) (600 µm along the y axis, i.e., the direction in which the structure was written); (d) DIC image.

Fig. 3
Fig. 3

Composite differential phase profile, Δϕ(z), of a single line scan.

Fig. 4
Fig. 4

Refractive-index profile Δn(z) of a single line scan.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Inz  2RrefzRsamp*zexp-az-z0/c2 ×cosf0z/c+ϕm+φN; m=1, 2,
Δϕz=ϕ1z-ϕ2z=4πλ00lz nx, zdx-n0lz=4πlzλ0nz¯-n0,

Metrics