Abstract

A fiber-optic radiometer is developed for accurate noncontact temperature measurements. Of compact and novel design, it is based on replacing the usual chopper with a simple shutter. The radiometer operates in a spectral range of 5–20 µm and uses a silver-halide IR-transmitting optical fiber. The radiometer has a temperature resolution of 0.1 °C, a time response of 200 ms, and a spatial resolution of ∼1 mm. Theory, simulation, radiometer design and construction, and examples of experimental measurements are shown. The novel radiometer can be used in diverse applications in science, medicine, and industry.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, Selected Papers on Infrared Fiber Optics (SPIE, Bellingham, Wash., 1990), SPIE MS9.
  2. R. J. Burger, D. A. Greenberg, P. Kirkitelos, “Radiometry, thermometry and minimum resolvable temperature with IR fiber optics,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds, Proc. SPIE1228, 206–214 (1990).
    [CrossRef]
  3. S. Sade, A. Katzir, “Fiberoptic infrared radiometer for real time in situ thermometry inside an MRI system,” Magn. Reson. Imaging 19, 287–290 (2001).
    [CrossRef] [PubMed]
  4. L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/Km in broad IR region,” in Infrared Optical Fibers and Their Applications, M. Saad, J. A. Harrington, eds., Proc. SPIE3849, 181–188 (1999).
    [CrossRef]
  5. F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
    [CrossRef]
  6. A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
    [CrossRef]
  7. S. R. Mordon, B. Buys, Y. Moschetto, “Zirconium fluoride glass fiber radiometer for low temperature measurements,” J. Lightwave Technol. 7, 1097–1100 (1989).
    [CrossRef]
  8. V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiber optic device for simultaneous laser power transmission and temperature measuring of irradiated object,” Electron. Lett. 20, 983–984 (1984).
    [CrossRef]
  9. A. Zur, A. Katzir, “Fibers for low temperature radiometric measurements,” Appl. Opt. 26, 1201–1206 (1987).
    [CrossRef] [PubMed]
  10. O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
    [CrossRef]
  11. B. Lobel, O. Eyal, N. Kariv, A. Katzir, “Temperature controlled CO2 laser welding of soft tissues: urinary bladder welding in different animal models (rats, rabbits, and cats),” Lasers Surg. Med. 26, 4–12 (2000).
    [CrossRef]
  12. Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometery for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 258–285 (1996).
    [CrossRef]
  13. A. Derow, O. Eyal, S. Sade, G. Fishman, D. Ophir, M. Grankin, A. Katzir, “Optical fiber coupled inferometric measurement of tympanic membrane temperature: a new diagnostic tool for acute otitis media,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, H. Lui, R. S. Malek, A. P. Perlmutter, L. Reinisch, P. J. Smalley, L. P. Tate, S. L. Thomsen, G. M. Watson, eds., Proc. SPIE3245, 227–233 (1998).
    [CrossRef]
  14. S. Drizlikh, A. Zur, F. Moser, A. Katzir, “Microwave warming of biological tissue and its control by IR fiber thermometry,” in Optical Fibers in Medicine VI, A. Katzir, ed., Proc. SPIE1420, 53–62 (1991).
    [CrossRef]
  15. V. Scharf, N. Naftali, O. Eyal, S. G. Lipson, A. Katzir, “Theoretical evaluation of a fourband fiber-optic radiometer,” Appl. Opt. 40, 104–111 (2001).
    [CrossRef]
  16. V. Scharf, A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
    [CrossRef]
  17. J. S. Accetta, D. L. Shumaker, The Infrared and Electro-Optical System Handbook (SPIE Optical Engineering Press, Bellingham, Wash., 1993).

2001 (2)

S. Sade, A. Katzir, “Fiberoptic infrared radiometer for real time in situ thermometry inside an MRI system,” Magn. Reson. Imaging 19, 287–290 (2001).
[CrossRef] [PubMed]

V. Scharf, N. Naftali, O. Eyal, S. G. Lipson, A. Katzir, “Theoretical evaluation of a fourband fiber-optic radiometer,” Appl. Opt. 40, 104–111 (2001).
[CrossRef]

2000 (2)

V. Scharf, A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

B. Lobel, O. Eyal, N. Kariv, A. Katzir, “Temperature controlled CO2 laser welding of soft tissues: urinary bladder welding in different animal models (rats, rabbits, and cats),” Lasers Surg. Med. 26, 4–12 (2000).
[CrossRef]

1997 (1)

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

1996 (2)

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometery for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 258–285 (1996).
[CrossRef]

1994 (1)

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

1989 (1)

S. R. Mordon, B. Buys, Y. Moschetto, “Zirconium fluoride glass fiber radiometer for low temperature measurements,” J. Lightwave Technol. 7, 1097–1100 (1989).
[CrossRef]

1987 (1)

1984 (1)

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiber optic device for simultaneous laser power transmission and temperature measuring of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

Accetta, J. S.

J. S. Accetta, D. L. Shumaker, The Infrared and Electro-Optical System Handbook (SPIE Optical Engineering Press, Bellingham, Wash., 1993).

Artjushenko, V. G.

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiber optic device for simultaneous laser power transmission and temperature measuring of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

Barkay, N.

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

Bunimovich, D.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Burger, R. J.

R. J. Burger, D. A. Greenberg, P. Kirkitelos, “Radiometry, thermometry and minimum resolvable temperature with IR fiber optics,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds, Proc. SPIE1228, 206–214 (1990).
[CrossRef]

Butvina, L. N.

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/Km in broad IR region,” in Infrared Optical Fibers and Their Applications, M. Saad, J. A. Harrington, eds., Proc. SPIE3849, 181–188 (1999).
[CrossRef]

Buys, B.

S. R. Mordon, B. Buys, Y. Moschetto, “Zirconium fluoride glass fiber radiometer for low temperature measurements,” J. Lightwave Technol. 7, 1097–1100 (1989).
[CrossRef]

Dankner, Y.

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometery for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 258–285 (1996).
[CrossRef]

Derow, A.

A. Derow, O. Eyal, S. Sade, G. Fishman, D. Ophir, M. Grankin, A. Katzir, “Optical fiber coupled inferometric measurement of tympanic membrane temperature: a new diagnostic tool for acute otitis media,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, H. Lui, R. S. Malek, A. P. Perlmutter, L. Reinisch, P. J. Smalley, L. P. Tate, S. L. Thomsen, G. M. Watson, eds., Proc. SPIE3245, 227–233 (1998).
[CrossRef]

DeRowe, A.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Dianov, E. M.

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/Km in broad IR region,” in Infrared Optical Fibers and Their Applications, M. Saad, J. A. Harrington, eds., Proc. SPIE3849, 181–188 (1999).
[CrossRef]

Drizlikh, S.

S. Drizlikh, A. Zur, F. Moser, A. Katzir, “Microwave warming of biological tissue and its control by IR fiber thermometry,” in Optical Fibers in Medicine VI, A. Katzir, ed., Proc. SPIE1420, 53–62 (1991).
[CrossRef]

Eyal, O.

V. Scharf, N. Naftali, O. Eyal, S. G. Lipson, A. Katzir, “Theoretical evaluation of a fourband fiber-optic radiometer,” Appl. Opt. 40, 104–111 (2001).
[CrossRef]

B. Lobel, O. Eyal, N. Kariv, A. Katzir, “Temperature controlled CO2 laser welding of soft tissues: urinary bladder welding in different animal models (rats, rabbits, and cats),” Lasers Surg. Med. 26, 4–12 (2000).
[CrossRef]

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometery for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 258–285 (1996).
[CrossRef]

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

A. Derow, O. Eyal, S. Sade, G. Fishman, D. Ophir, M. Grankin, A. Katzir, “Optical fiber coupled inferometric measurement of tympanic membrane temperature: a new diagnostic tool for acute otitis media,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, H. Lui, R. S. Malek, A. P. Perlmutter, L. Reinisch, P. J. Smalley, L. P. Tate, S. L. Thomsen, G. M. Watson, eds., Proc. SPIE3245, 227–233 (1998).
[CrossRef]

Fishman, G.

A. Derow, O. Eyal, S. Sade, G. Fishman, D. Ophir, M. Grankin, A. Katzir, “Optical fiber coupled inferometric measurement of tympanic membrane temperature: a new diagnostic tool for acute otitis media,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, H. Lui, R. S. Malek, A. P. Perlmutter, L. Reinisch, P. J. Smalley, L. P. Tate, S. L. Thomsen, G. M. Watson, eds., Proc. SPIE3245, 227–233 (1998).
[CrossRef]

German, A.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Gilo, M.

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Gotshal, Y.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Grankin, M.

A. Derow, O. Eyal, S. Sade, G. Fishman, D. Ophir, M. Grankin, A. Katzir, “Optical fiber coupled inferometric measurement of tympanic membrane temperature: a new diagnostic tool for acute otitis media,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, H. Lui, R. S. Malek, A. P. Perlmutter, L. Reinisch, P. J. Smalley, L. P. Tate, S. L. Thomsen, G. M. Watson, eds., Proc. SPIE3245, 227–233 (1998).
[CrossRef]

Greenberg, D. A.

R. J. Burger, D. A. Greenberg, P. Kirkitelos, “Radiometry, thermometry and minimum resolvable temperature with IR fiber optics,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds, Proc. SPIE1228, 206–214 (1990).
[CrossRef]

Harrington, J. A.

J. A. Harrington, Selected Papers on Infrared Fiber Optics (SPIE, Bellingham, Wash., 1990), SPIE MS9.

Kariv, N.

B. Lobel, O. Eyal, N. Kariv, A. Katzir, “Temperature controlled CO2 laser welding of soft tissues: urinary bladder welding in different animal models (rats, rabbits, and cats),” Lasers Surg. Med. 26, 4–12 (2000).
[CrossRef]

Katzir, A.

V. Scharf, N. Naftali, O. Eyal, S. G. Lipson, A. Katzir, “Theoretical evaluation of a fourband fiber-optic radiometer,” Appl. Opt. 40, 104–111 (2001).
[CrossRef]

S. Sade, A. Katzir, “Fiberoptic infrared radiometer for real time in situ thermometry inside an MRI system,” Magn. Reson. Imaging 19, 287–290 (2001).
[CrossRef] [PubMed]

V. Scharf, A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

B. Lobel, O. Eyal, N. Kariv, A. Katzir, “Temperature controlled CO2 laser welding of soft tissues: urinary bladder welding in different animal models (rats, rabbits, and cats),” Lasers Surg. Med. 26, 4–12 (2000).
[CrossRef]

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometery for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 258–285 (1996).
[CrossRef]

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

A. Zur, A. Katzir, “Fibers for low temperature radiometric measurements,” Appl. Opt. 26, 1201–1206 (1987).
[CrossRef] [PubMed]

A. Derow, O. Eyal, S. Sade, G. Fishman, D. Ophir, M. Grankin, A. Katzir, “Optical fiber coupled inferometric measurement of tympanic membrane temperature: a new diagnostic tool for acute otitis media,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, H. Lui, R. S. Malek, A. P. Perlmutter, L. Reinisch, P. J. Smalley, L. P. Tate, S. L. Thomsen, G. M. Watson, eds., Proc. SPIE3245, 227–233 (1998).
[CrossRef]

S. Drizlikh, A. Zur, F. Moser, A. Katzir, “Microwave warming of biological tissue and its control by IR fiber thermometry,” in Optical Fibers in Medicine VI, A. Katzir, ed., Proc. SPIE1420, 53–62 (1991).
[CrossRef]

Kirkitelos, P.

R. J. Burger, D. A. Greenberg, P. Kirkitelos, “Radiometry, thermometry and minimum resolvable temperature with IR fiber optics,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds, Proc. SPIE1228, 206–214 (1990).
[CrossRef]

Kuepper, L.

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/Km in broad IR region,” in Infrared Optical Fibers and Their Applications, M. Saad, J. A. Harrington, eds., Proc. SPIE3849, 181–188 (1999).
[CrossRef]

Levite, A.

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Lichkova, N. V.

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/Km in broad IR region,” in Infrared Optical Fibers and Their Applications, M. Saad, J. A. Harrington, eds., Proc. SPIE3849, 181–188 (1999).
[CrossRef]

Lipson, S. G.

Lobel, B.

B. Lobel, O. Eyal, N. Kariv, A. Katzir, “Temperature controlled CO2 laser welding of soft tissues: urinary bladder welding in different animal models (rats, rabbits, and cats),” Lasers Surg. Med. 26, 4–12 (2000).
[CrossRef]

Masychev, V. J.

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiber optic device for simultaneous laser power transmission and temperature measuring of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

Mordon, S. R.

S. R. Mordon, B. Buys, Y. Moschetto, “Zirconium fluoride glass fiber radiometer for low temperature measurements,” J. Lightwave Technol. 7, 1097–1100 (1989).
[CrossRef]

Moschetto, Y.

S. R. Mordon, B. Buys, Y. Moschetto, “Zirconium fluoride glass fiber radiometer for low temperature measurements,” J. Lightwave Technol. 7, 1097–1100 (1989).
[CrossRef]

Moser, F.

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

S. Drizlikh, A. Zur, F. Moser, A. Katzir, “Microwave warming of biological tissue and its control by IR fiber thermometry,” in Optical Fibers in Medicine VI, A. Katzir, ed., Proc. SPIE1420, 53–62 (1991).
[CrossRef]

Naftali, N.

Nagli, L.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Ophir, D.

A. Derow, O. Eyal, S. Sade, G. Fishman, D. Ophir, M. Grankin, A. Katzir, “Optical fiber coupled inferometric measurement of tympanic membrane temperature: a new diagnostic tool for acute otitis media,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, H. Lui, R. S. Malek, A. P. Perlmutter, L. Reinisch, P. J. Smalley, L. P. Tate, S. L. Thomsen, G. M. Watson, eds., Proc. SPIE3245, 227–233 (1998).
[CrossRef]

Ravid, A.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Saar, A.

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

Sade, S.

S. Sade, A. Katzir, “Fiberoptic infrared radiometer for real time in situ thermometry inside an MRI system,” Magn. Reson. Imaging 19, 287–290 (2001).
[CrossRef] [PubMed]

A. Derow, O. Eyal, S. Sade, G. Fishman, D. Ophir, M. Grankin, A. Katzir, “Optical fiber coupled inferometric measurement of tympanic membrane temperature: a new diagnostic tool for acute otitis media,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, H. Lui, R. S. Malek, A. P. Perlmutter, L. Reinisch, P. J. Smalley, L. P. Tate, S. L. Thomsen, G. M. Watson, eds., Proc. SPIE3245, 227–233 (1998).
[CrossRef]

Scharf, V.

V. Scharf, N. Naftali, O. Eyal, S. G. Lipson, A. Katzir, “Theoretical evaluation of a fourband fiber-optic radiometer,” Appl. Opt. 40, 104–111 (2001).
[CrossRef]

V. Scharf, A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Shalem, S.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Shemesh, D.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Shenfeld, O.

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Shnitzer, I.

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

Shumaker, D. L.

J. S. Accetta, D. L. Shumaker, The Infrared and Electro-Optical System Handbook (SPIE Optical Engineering Press, Bellingham, Wash., 1993).

Simhi, R.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Sysoev, V. K.

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiber optic device for simultaneous laser power transmission and temperature measuring of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

Vasserman, I.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Voitsekhovsky, V. V.

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiber optic device for simultaneous laser power transmission and temperature measuring of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

Zavgorodnev, V. N.

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/Km in broad IR region,” in Infrared Optical Fibers and Their Applications, M. Saad, J. A. Harrington, eds., Proc. SPIE3849, 181–188 (1999).
[CrossRef]

Zubov, J. V.

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiber optic device for simultaneous laser power transmission and temperature measuring of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

Zur, A.

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

A. Zur, A. Katzir, “Fibers for low temperature radiometric measurements,” Appl. Opt. 26, 1201–1206 (1987).
[CrossRef] [PubMed]

S. Drizlikh, A. Zur, F. Moser, A. Katzir, “Microwave warming of biological tissue and its control by IR fiber thermometry,” in Optical Fibers in Medicine VI, A. Katzir, ed., Proc. SPIE1420, 53–62 (1991).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

V. Scharf, A. Katzir, “Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometery for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 258–285 (1996).
[CrossRef]

Electron. Lett. (1)

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiber optic device for simultaneous laser power transmission and temperature measuring of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

Fiber Integr. Opt. (1)

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simhi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

J. Lightwave Technol. (1)

S. R. Mordon, B. Buys, Y. Moschetto, “Zirconium fluoride glass fiber radiometer for low temperature measurements,” J. Lightwave Technol. 7, 1097–1100 (1989).
[CrossRef]

Lasers Surg. Med. (1)

B. Lobel, O. Eyal, N. Kariv, A. Katzir, “Temperature controlled CO2 laser welding of soft tissues: urinary bladder welding in different animal models (rats, rabbits, and cats),” Lasers Surg. Med. 26, 4–12 (2000).
[CrossRef]

Magn. Reson. Imaging (1)

S. Sade, A. Katzir, “Fiberoptic infrared radiometer for real time in situ thermometry inside an MRI system,” Magn. Reson. Imaging 19, 287–290 (2001).
[CrossRef] [PubMed]

Opt. Eng. (1)

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Other (6)

A. Derow, O. Eyal, S. Sade, G. Fishman, D. Ophir, M. Grankin, A. Katzir, “Optical fiber coupled inferometric measurement of tympanic membrane temperature: a new diagnostic tool for acute otitis media,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, H. Lui, R. S. Malek, A. P. Perlmutter, L. Reinisch, P. J. Smalley, L. P. Tate, S. L. Thomsen, G. M. Watson, eds., Proc. SPIE3245, 227–233 (1998).
[CrossRef]

S. Drizlikh, A. Zur, F. Moser, A. Katzir, “Microwave warming of biological tissue and its control by IR fiber thermometry,” in Optical Fibers in Medicine VI, A. Katzir, ed., Proc. SPIE1420, 53–62 (1991).
[CrossRef]

J. S. Accetta, D. L. Shumaker, The Infrared and Electro-Optical System Handbook (SPIE Optical Engineering Press, Bellingham, Wash., 1993).

L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, L. Kuepper, “Crystalline silver halide fibers with optical losses lower than 50 dB/Km in broad IR region,” in Infrared Optical Fibers and Their Applications, M. Saad, J. A. Harrington, eds., Proc. SPIE3849, 181–188 (1999).
[CrossRef]

J. A. Harrington, Selected Papers on Infrared Fiber Optics (SPIE, Bellingham, Wash., 1990), SPIE MS9.

R. J. Burger, D. A. Greenberg, P. Kirkitelos, “Radiometry, thermometry and minimum resolvable temperature with IR fiber optics,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds, Proc. SPIE1228, 206–214 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic drawing of the shutter-based radiometer.

Fig. 2
Fig. 2

Typical IR signal obtained during one cycle of shutter operation.

Fig. 3
Fig. 3

Calibration setup.

Fig. 4
Fig. 4

Temperature difference between the blackbody temperature (T b ) and the shutter temperature T sh as a function of the IR signal: (a) experimental measurements, (b) theoretical simulation.

Fig. 5
Fig. 5

MRΔT measurement setup.

Fig. 6
Fig. 6

Infrared signal as a function of the position of the distal end of the fiber along a plate for a temperature gradient of 0.2 °C/cm. The temperature at position x = 0 cm is 37 °C.

Fig. 7
Fig. 7

Simulation: MRΔT as a function of blackbody temperature T b .

Fig. 8
Fig. 8

Setup for nonuniform temperature measurements. The fiber was scanned in the xy plane.

Fig. 9
Fig. 9

Temperature distribution as measured by the shutter-based fiber-optic radiometer.

Fig. 10
Fig. 10

Temperature distribution as measured by an IR camera.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Tb-Tsh=aIRsignal+b, a±Δa=19.3±0.2 °C/V, b±Δb=4.7±0.2 °C.
Tb±ΔTb=50.0±0.3 °C.
Tb-Tsh=aIRsignal+b, a±Δa=17.5±0.2 °C/V, b±Δb=6.4±0.2 °C.
Δf=500 Hz, εb=1, λa=4.5 μm, λb=25 μm, L=0.75 m, θeff=56°, h=1 mm, d=1.2 mm, a=0.45 mm, rd=1 mm, NEP=8.5×10-10 W/Hz.
WλT, λ=εbλWbbλT, λWcm2 μm.
WbbΩλ=WbbλπcosθWcm2 sr μm,
Pshutter_open=A  ΩεmsWbbΩλTms, λ+1-εmsWbbΩλTroom, λ+Ω0-ΩεradWbbΩλTrad, λdλ,
Pshutter_closed=A  Ω0εshWbbΩλTsh, λ+1-εshεradWbbΩλTrad, λdλ,
Ptotal=Pshutter_open-Pshutter_closed.
Ptot=A  ΩWbbΩλTms, λ-WbbΩλTsh, λdλ.
Signalmax=Pshutter_open-Pshutter_closedRVAVV.
ΔPNoise=2,
ΔP=PtotT+ΔT-PtotT.
ΔP=Pshutter_openT+ΔT-Pshutter_openT.
ΔP=πRb2ΔT λaλb εbλC2λT2WbbλTA1A2A3Fλdλ,
Noise=Noiseshutter_open2+Noiseshutter_closed21/2W
Noise=2Noisedetector=2NEPΔfW,
πRb2ΔTminλaλb εbλC2λT2WbbλTA1A2A3Fλdλ2NEPΔf=2.
ΔTmin=22NEPΔfπRb2λaλb εbλC2λT2WbbλTA1A2A3Fλdλ.

Metrics