Abstract

An achromatic device to rotate optical polarization by 90° is described. This is based on a series of reflecting surfaces that rotates incoming light about the optical axis and translates it such that the exiting light is collinear. Polarization rotation is achieved by rotation of the optical beam, as opposed to the more common approach of phase retardation by use of birefringent elements. For broadband operation from the UV to the near infrared, the device was constructed by use of total internal reflection in three fused-silica glass components. Losses are minimized with interstitial surfaces designed to be angled close to Brewster’s angle.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Filinski, T. Skettrup, “Achromatic phase retarders constructed from right-angle prisms: design,” Appl. Opt. 23, 2747–2751 (1984).
    [CrossRef] [PubMed]
  2. T. F. Thonn, R. M. A. Azzam, “Three-reflection halfwave and quarterwave retarders using dielectric-coated metallic mirrors,” Appl. Opt. 23, 2752–2759 (1984).
    [CrossRef] [PubMed]
  3. N. N. Nagib, M. S. El-Bahrawy, “Phase retarders with variable angles of total internal reflection,” Appl. Opt. 33, 1218–1222 (1994).
    [CrossRef] [PubMed]
  4. R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281, 1–64 (1997).
    [CrossRef]
  5. S.-M. F. Nee, C. Yoo, T. Cole, D. Burge, “Characterization for imperfect polarizers under imperfect conditions,” Appl. Opt. 37, 54–64 (1998).
    [CrossRef]
  6. N. N. Nagib, “Phase retarders highly insensitive to the input angle,” Appl. Opt. 37, 1231–1235 (1998).
    [CrossRef]
  7. F. J. Duarte, “Beam transmission characteristics of a collinear polarization rotator,” Appl. Opt. 31, 3377–3378 (1992).
    [CrossRef] [PubMed]
  8. R. K. Appel, C. D. Dyer, A. W. Jones, J. N. Lockwood, “Enhanced Raman spectroscopy using collection optics designed for continuously tunable excitation,” Meas. Sci. Technol. 13, 411–420 (2002).
    [CrossRef]
  9. R. K. Appel, C. D. Dyer, J. N. Lockwood, A. J. Bell, “Ultra-broadband collection and illumination optics for Raman and photoluminescence spectroscopy in the 200–700 nm waveband,” Rev. Sci. Instrum.73 (to be published).
  10. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  11. E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974).
  12. M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 1995), Vol. 2.

2002 (1)

R. K. Appel, C. D. Dyer, A. W. Jones, J. N. Lockwood, “Enhanced Raman spectroscopy using collection optics designed for continuously tunable excitation,” Meas. Sci. Technol. 13, 411–420 (2002).
[CrossRef]

1998 (2)

1997 (1)

R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281, 1–64 (1997).
[CrossRef]

1994 (1)

1992 (1)

1984 (2)

Appel, R. K.

R. K. Appel, C. D. Dyer, A. W. Jones, J. N. Lockwood, “Enhanced Raman spectroscopy using collection optics designed for continuously tunable excitation,” Meas. Sci. Technol. 13, 411–420 (2002).
[CrossRef]

R. K. Appel, C. D. Dyer, J. N. Lockwood, A. J. Bell, “Ultra-broadband collection and illumination optics for Raman and photoluminescence spectroscopy in the 200–700 nm waveband,” Rev. Sci. Instrum.73 (to be published).

Azzam, R. M. A.

Bell, A. J.

R. K. Appel, C. D. Dyer, J. N. Lockwood, A. J. Bell, “Ultra-broadband collection and illumination optics for Raman and photoluminescence spectroscopy in the 200–700 nm waveband,” Rev. Sci. Instrum.73 (to be published).

Bhandari, R.

R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281, 1–64 (1997).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

Burge, D.

Cole, T.

Duarte, F. J.

Dyer, C. D.

R. K. Appel, C. D. Dyer, A. W. Jones, J. N. Lockwood, “Enhanced Raman spectroscopy using collection optics designed for continuously tunable excitation,” Meas. Sci. Technol. 13, 411–420 (2002).
[CrossRef]

R. K. Appel, C. D. Dyer, J. N. Lockwood, A. J. Bell, “Ultra-broadband collection and illumination optics for Raman and photoluminescence spectroscopy in the 200–700 nm waveband,” Rev. Sci. Instrum.73 (to be published).

El-Bahrawy, M. S.

Filinski, I.

Hecht, E.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974).

Jones, A. W.

R. K. Appel, C. D. Dyer, A. W. Jones, J. N. Lockwood, “Enhanced Raman spectroscopy using collection optics designed for continuously tunable excitation,” Meas. Sci. Technol. 13, 411–420 (2002).
[CrossRef]

Lockwood, J. N.

R. K. Appel, C. D. Dyer, A. W. Jones, J. N. Lockwood, “Enhanced Raman spectroscopy using collection optics designed for continuously tunable excitation,” Meas. Sci. Technol. 13, 411–420 (2002).
[CrossRef]

R. K. Appel, C. D. Dyer, J. N. Lockwood, A. J. Bell, “Ultra-broadband collection and illumination optics for Raman and photoluminescence spectroscopy in the 200–700 nm waveband,” Rev. Sci. Instrum.73 (to be published).

Nagib, N. N.

Nee, S.-M. F.

Skettrup, T.

Thonn, T. F.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

Yoo, C.

Zajac, A.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974).

Appl. Opt. (6)

Meas. Sci. Technol. (1)

R. K. Appel, C. D. Dyer, A. W. Jones, J. N. Lockwood, “Enhanced Raman spectroscopy using collection optics designed for continuously tunable excitation,” Meas. Sci. Technol. 13, 411–420 (2002).
[CrossRef]

Phys. Rep. (1)

R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281, 1–64 (1997).
[CrossRef]

Other (4)

R. K. Appel, C. D. Dyer, J. N. Lockwood, A. J. Bell, “Ultra-broadband collection and illumination optics for Raman and photoluminescence spectroscopy in the 200–700 nm waveband,” Rev. Sci. Instrum.73 (to be published).

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974).

M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 1995), Vol. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) and (b) Two examples of rotation of optical polarization by a succession of seven reflections.

Fig. 2
Fig. 2

Appropriate angling of Brewster surfaces to achieve full chromatic correction.

Fig. 3
Fig. 3

Reflection loss for p-polarized light at a Brewster surface. The curves are for different angled surfaces as indicated in Fig. 2.

Fig. 4
Fig. 4

Schematic of device projected onto the xz plane. The bold black line indicates light propagation within each of the three component prisms. The bold dashed line indicates light propagating between each prism (within an air gap). The gray arrows represent the reflection from the various surfaces. The numbered circles represent the TIR surfaces.

Fig. 5
Fig. 5

Photographs of polystyrene models: (a) the device chosen to be constructed, (b) an alternative realization of the device, (c) photograph of the constructed device.

Fig. 6
Fig. 6

Worst-case depolarization that is due to a manufacturing tolerance of 30″ for each optical surface as a function of the optical wavelength [according to Eq. (4)].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R=tan2(θ1-θ0)tan2(θ1+θ0),
sin θ0=n1 sin θ1.
tanδλ2=cos θ1sin2 θ1-1/n1λ21/2sin2 θ1.
depolarization ratioλ=1 : Nsin εsin δ λ.

Metrics