Abstract

We demonstrate full-color imaging through a turbid medium by use of photorefractive coherence gating and a technique to separate the recording space of each color from those of the other colors. We found that the recording spaces must be separate when a multicolor image is recorded in a photorefractive crystal to prevent the interference of the holograms with one another. For full-color imaging we used a He–Cd white-light laser, which is compact and useful for full-color holography. Full-color-image retrieval is demonstrated through five mean free paths of a turbid medium.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1904 (1993).
    [CrossRef] [PubMed]
  2. A. Knuttel, J. M. Schmitt, J. R. Knuston, “Low-coherence reflectometry for stationary lateral and depth profiling with acousto-optic deflectors and a CCD camera,” Opt. Lett. 19, 302–304 (1994).
    [CrossRef] [PubMed]
  3. D. S. Dilworth, E. N. Leith, J. L. Lopez, “Three-dimensional confocal imaging of objects embedded within thick diffusing media,” Appl. Opt. 30, 1796–1803 (1991).
    [CrossRef] [PubMed]
  4. G. E. Anderson, F. Liu, R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19, 981–983 (1994).
    [CrossRef] [PubMed]
  5. A. M. Mamaev, L. I. Ivleva, N. M. Polozkov, V. V. Shkunov, “Photorefractive visualization through opaque scattering media,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 632–634.
  6. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
    [CrossRef] [PubMed]
  7. A. Shiratori, M. Obara, “Photorefractive coherence-gated interferometry,” Rev. Sci. Instrum. 69, 3741–3745 (1998).
    [CrossRef]
  8. M. Ikuta, M. Obara, “Three-color imaging through turbid media using photorefractive coherence gating in one BaTiO3:Co photorefractive crystal,” in Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 38–39.
  9. R. Hagari, A. Shiratori, M. Obara, “Multicolor image reconstruction using photorefractive holography,” in IEEE Lasers and Electro-Optics Society Annual Meeting, 1998 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 2, pp. 344–345.
  10. F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
    [CrossRef]
  11. P. Yeh, C. Gu, C.-J. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
    [CrossRef]
  12. See, for example, F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991).
  13. J. Feinberg, “Real-time edge enhancement using the photorefractive effect,” Opt. Lett. 5, 330–332 (1980).
    [CrossRef] [PubMed]
  14. D. Rytz, B. A. Wechsler, M. H. Garrett, C. C. Nelson, R. N. Schwrtz, “Photorefractive properties of BaTiO3:Co,” J. Opt. Soc. Am. B 7, 2245–2254 (1990).
    [CrossRef]
  15. M. Young, Optics and Lasers (Springer-Verlag, Berlin, 1977), Chap. 6.
    [CrossRef]
  16. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, New York, 1993), Chap. 4.

1998

A. Shiratori, M. Obara, “Photorefractive coherence-gated interferometry,” Rev. Sci. Instrum. 69, 3741–3745 (1998).
[CrossRef]

1995

1994

1993

1991

1990

1980

Alfano, R. R.

Anderson, G. E.

Barry, N. P.

Cheng, C.-J.

P. Yeh, C. Gu, C.-J. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
[CrossRef]

Dainty, J. C.

Das, B. B.

Dilworth, D. S.

Feinberg, J.

French, P. M. W.

Garrett, M. H.

Gu, C.

P. Yeh, C. Gu, C.-J. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
[CrossRef]

Hagari, R.

R. Hagari, A. Shiratori, M. Obara, “Multicolor image reconstruction using photorefractive holography,” in IEEE Lasers and Electro-Optics Society Annual Meeting, 1998 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 2, pp. 344–345.

Hsu, K. Y.

P. Yeh, C. Gu, C.-J. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
[CrossRef]

Hyde, S. C. W.

Ikuta, M.

M. Ikuta, M. Obara, “Three-color imaging through turbid media using photorefractive coherence gating in one BaTiO3:Co photorefractive crystal,” in Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 38–39.

Ivleva, L. I.

A. M. Mamaev, L. I. Ivleva, N. M. Polozkov, V. V. Shkunov, “Photorefractive visualization through opaque scattering media,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 632–634.

Jones, R.

Klein, M. B.

Knuston, J. R.

Knuttel, A.

Leith, E. N.

Liu, F.

Lopez, J. L.

Mamaev, A. M.

A. M. Mamaev, L. I. Ivleva, N. M. Polozkov, V. V. Shkunov, “Photorefractive visualization through opaque scattering media,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 632–634.

Mayers, A.

F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
[CrossRef]

Mok, F. H.

Nelson, C. C.

Obara, M.

A. Shiratori, M. Obara, “Photorefractive coherence-gated interferometry,” Rev. Sci. Instrum. 69, 3741–3745 (1998).
[CrossRef]

R. Hagari, A. Shiratori, M. Obara, “Multicolor image reconstruction using photorefractive holography,” in IEEE Lasers and Electro-Optics Society Annual Meeting, 1998 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 2, pp. 344–345.

M. Ikuta, M. Obara, “Three-color imaging through turbid media using photorefractive coherence gating in one BaTiO3:Co photorefractive crystal,” in Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 38–39.

Polozkov, N. M.

A. M. Mamaev, L. I. Ivleva, N. M. Polozkov, V. V. Shkunov, “Photorefractive visualization through opaque scattering media,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 632–634.

Rajan, S.

F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
[CrossRef]

Rytz, D.

Schmitt, J. M.

Schwrtz, R. N.

Shiratori, A.

A. Shiratori, M. Obara, “Photorefractive coherence-gated interferometry,” Rev. Sci. Instrum. 69, 3741–3745 (1998).
[CrossRef]

R. Hagari, A. Shiratori, M. Obara, “Multicolor image reconstruction using photorefractive holography,” in IEEE Lasers and Electro-Optics Society Annual Meeting, 1998 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 2, pp. 344–345.

Shkunov, V. V.

A. M. Mamaev, L. I. Ivleva, N. M. Polozkov, V. V. Shkunov, “Photorefractive visualization through opaque scattering media,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 632–634.

Stoll, H. M.

Tackitt, M. C.

Wechsler, B. A.

Wu, S.

F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
[CrossRef]

Yeh, P.

P. Yeh, C. Gu, C.-J. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
[CrossRef]

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, New York, 1993), Chap. 4.

Yoo, K. M.

Young, M.

M. Young, Optics and Lasers (Springer-Verlag, Berlin, 1977), Chap. 6.
[CrossRef]

Yu, F. T. S.

F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am. B

Opt. Commun.

F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
[CrossRef]

Opt. Eng.

P. Yeh, C. Gu, C.-J. Cheng, K. Y. Hsu, “Hologram enhancement in photorefractive media,” Opt. Eng. 34, 2204–2212 (1995).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

A. Shiratori, M. Obara, “Photorefractive coherence-gated interferometry,” Rev. Sci. Instrum. 69, 3741–3745 (1998).
[CrossRef]

Other

M. Ikuta, M. Obara, “Three-color imaging through turbid media using photorefractive coherence gating in one BaTiO3:Co photorefractive crystal,” in Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 38–39.

R. Hagari, A. Shiratori, M. Obara, “Multicolor image reconstruction using photorefractive holography,” in IEEE Lasers and Electro-Optics Society Annual Meeting, 1998 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 2, pp. 344–345.

A. M. Mamaev, L. I. Ivleva, N. M. Polozkov, V. V. Shkunov, “Photorefractive visualization through opaque scattering media,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 632–634.

M. Young, Optics and Lasers (Springer-Verlag, Berlin, 1977), Chap. 6.
[CrossRef]

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, New York, 1993), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a separate recording area for each color in the photorefractive crystal.

Fig. 2
Fig. 2

Cross-sectional view of the recording beam: a, the constituent color beams overlap at a diameter of 1.2 mm; b, the constituent color beams are separated at 1.6 mm.

Fig. 3
Fig. 3

Diffraction efficiency of the red beam as a function of the blue object beam’s intensity. The numbers marked with asterisks are compared to those for diffraction efficiency when the intensity of the blue object beam is zero.

Fig. 4
Fig. 4

Reconstructed color component ratio in the BaTiO3:Co crystal as a function of relative proportions that represent color quality. O, original color; D, reconstructed color (divided signal beam); S, reconstructed color (superimposed reference beams). The transmittance of a color filter is used as a recording image for each wavelength: blue:green:red = (a) 100%, 100%, 100% (without a color filter), (b) 84.1%, 79.5%, 30.8%, (c) 34.1%, 29.2%, 90.4%, (d) 1.2%, 18.8%, 86.5%.

Fig. 5
Fig. 5

Photorefractive two-wave mixing gain as a function of m (see text).

Fig. 6
Fig. 6

Experimental setup for three-color imaging through a turbid medium. BS, beam splitter.

Fig. 7
Fig. 7

SNR of reconstructed images through a turbid medium (cells 1–4) for each color.

Fig. 8
Fig. 8

Direct observation images and their reconstructed images. The brightness of the image is adjusted by a neutral-density filter. The number on the top is the number of the cell.

Fig. 9
Fig. 9

Beam arrangement for the crystal: a, this experiment; b, the ideal arrangement.

Tables (1)

Tables Icon

Table 1 Scattering Depth of a MFP at Each Wavelength of a He–Cd Laser for Cells 1–4a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G=1+m1+m exp-γLexp-aL,
γ=-2πnλ cosθno2ne2r42Es sin α sin 2α,
Ir=I0 exp-qG,

Metrics