Abstract

A Sc-Si multilayer coating was applied to a replica of the 3600 groove/mm grating, developed for the SO82A spectroheliograph that flew on the Skylab mission, for the purpose of enhancing the normal-incidence efficiency in the extreme-ultraviolet region. The efficiency, measured at an angle of incidence of 6° with synchrotron radiation, had a maximum value of 7.2% at a wavelength of 38 nm and was a factor of 3 higher than the efficiency of the gold-coated Skylab grating. The measured efficiency of the Sc-Si grating was in good agreement with the efficiency calculated by use of the modified integral method.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Culhane, C. M. Korendyke, T. Watanabe, G. A. Doschek, “An extreme ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. Korendyke, O. Siegmund, B. Woodgate, eds., Proc. SPIE4139, 294–312 (2000).
    [CrossRef]
  2. J. F. Seely, “Multilayer grating for the extreme ultraviolet spectrometer (EIS),” in X-Ray Optics, Instruments, and Missions IV, “R. Hoover, A. Walker, eds., Proc. SPIE4138, 174–181 (2000).
    [CrossRef]
  3. C. Montcalm, S. Bajt, J. F. Seely, “MoRu-Be multilayer-coated grating with 10.4% normal-incidence efficiency near the 11.4-nm wavelength,” Opt. Lett. 26, 125–127 (2001).
    [CrossRef]
  4. Yu. A. Uspenskii, V. E. Levashov, A. V. Vinogradov, A. I. Fedorenko, V. V. Kondratenko, Yu. P. Pershin, E. N. Zubarev, V. Yu. Fedotov, “High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35–50 nm,” Opt. Lett. 23, 771–773 (1998).
    [CrossRef]
  5. U. Feldman, “Elemental abundances in the upper solar atmosphere,” Phys. Scr. 46, 202–220 (1992).
    [CrossRef]
  6. R. Tousey, J.-D. F. Bartoe, G. E. Brueckner, J. D. Purcell, “Extreme ultraviolet spectroheliograph ATM experiment SO82A,” Appl. Opt. 16, 870–878 (1977).
    [PubMed]
  7. U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170 to 625 Å (E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., 1987).
  8. J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340 Å wavelength region of replicas of the Skylab 3600 line/mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
    [CrossRef] [PubMed]
  9. D. L. Voronov, E. N. Zubarev, V. V. Kondratenko, A. V. Pen’kov, Yu. P. Pershin, A. G. Ponomarenko, A. V. Vinogradov, Yu. A. Uspenskii, J. F. Seely, “Structure, thermal stability and reflectivity of Sc/Si and Sc/W/Si/W multilayer x-ray mirrors,” in Soft X-Ray Lasers and Applications IV, E. E. Fill, J. J. G. Rocca, eds., Proc. SPIE4505 (to be published).
  10. J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
    [CrossRef]
  11. W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
    [CrossRef]
  12. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
    [CrossRef]
  13. Yu. A. Uspenskii, J. F. Seely, N. L. Popov, A. V. Vinogradov, Yu. P. Pershin, V. V. Kondratenko are preparing a manuscript to be called “New method for the determination of EUV optical constants in chemically active materials: application to Sc and Ti.”
  14. E. D. Palik, “Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).
  15. L. I. Goray, “Numerical analysis for relief gratings working in the soft x-ray and XUV region by the integral equation method,” in X-Ray and UV Detectors, R. B. Hoover, M. W. Tate, eds., Proc. SPIE2278, 168–172 (1994).
    [CrossRef]
  16. L. I. Goray, “Rigorous integral method in application to computing diffraction on relief gratings working in wavelength range from microwaves to x-ray,” in Application and Theory of Periodic Structures, T. Jannson, N. C. Gallagher, eds., Proc. SPIE2532, 427–433 (1995).
    [CrossRef]
  17. L. I. Goray, “Modified integral method for weak convergence problems of light scattering on relief grating,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. I. Sutherland, D. W. Prather, I. Cindrich, eds., Proc. SPIE4291 (to be published).
  18. L. I. Goray, “Modified integral method and real electromagnetic properties of echelles,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. I. Sutherland, D. W. Prather, I. Cindrich, eds., Proc. SPIE4291 (to be published).
  19. J. F. Seely, L. I. Goray, “Normal incidence multilayer gratings for the extreme ultraviolet region: experimental measurements and computational modeling,” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. Walker, eds., Proc. SPIE3766, 364–370 (1999).
    [CrossRef]
  20. L. I. Goray, J. F. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements,” Appl. Opt. (to be published).
  21. E. Spiller, Soft X-Ray Optics (SPIE, Bellingham, Wash., 1994), p. 110.
  22. J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated concave diffraction grating in the 136–142 Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
    [CrossRef] [PubMed]
  23. J. W. Brosius, J. M. Davila, R. J. Thomas, “Calibration of the SERTS-95 spectrograph from iron line intensity ratios,” Astrophys. J. 497, L113–L116 (1998).
    [CrossRef]
  24. R. A. M. Keski-Kuha, R. J. Thomas, J. S. Gum, C. E. Condor, “Performance of multilayer coated diffraction gratings in the EUV,” Appl. Opt. 29, 4529–4531 (1990).
    [CrossRef] [PubMed]
  25. R. J. Thomas, R. A. M. Keski-Kuha, W. M. Neupert, C. E. Condor, J. S. Gum, “Extreme ultraviolet performance of a multilayer coated high-density toroidal grating,” Appl. Opt. 30, 2245–2251 (1991)
    [CrossRef] [PubMed]

2001

1998

1995

1993

1992

U. Feldman, “Elemental abundances in the upper solar atmosphere,” Phys. Scr. 46, 202–220 (1992).
[CrossRef]

1991

1990

1989

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

1986

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
[CrossRef]

1977

Bajt, S.

Barbee, T. W.

Bartoe, J.-D. F.

Boyer, C. N.

Brosius, J. W.

J. W. Brosius, J. M. Davila, R. J. Thomas, “Calibration of the SERTS-95 spectrograph from iron line intensity ratios,” Astrophys. J. 497, L113–L116 (1998).
[CrossRef]

Brown, C. M.

Brueckner, G. E.

Condor, C. E.

Cruddace, R. G.

Culhane, J. L.

J. L. Culhane, C. M. Korendyke, T. Watanabe, G. A. Doschek, “An extreme ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. Korendyke, O. Siegmund, B. Woodgate, eds., Proc. SPIE4139, 294–312 (2000).
[CrossRef]

Davila, J. M.

J. W. Brosius, J. M. Davila, R. J. Thomas, “Calibration of the SERTS-95 spectrograph from iron line intensity ratios,” Astrophys. J. 497, L113–L116 (1998).
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Dohne, B.

U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170 to 625 Å (E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., 1987).

Doschek, G. A.

J. L. Culhane, C. M. Korendyke, T. Watanabe, G. A. Doschek, “An extreme ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. Korendyke, O. Siegmund, B. Woodgate, eds., Proc. SPIE4139, 294–312 (2000).
[CrossRef]

Fedorenko, A. I.

Fedotov, V. Yu.

Feldman, U.

U. Feldman, “Elemental abundances in the upper solar atmosphere,” Phys. Scr. 46, 202–220 (1992).
[CrossRef]

U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170 to 625 Å (E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., 1987).

Goray, L. I.

L. I. Goray, “Modified integral method for weak convergence problems of light scattering on relief grating,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. I. Sutherland, D. W. Prather, I. Cindrich, eds., Proc. SPIE4291 (to be published).

L. I. Goray, “Numerical analysis for relief gratings working in the soft x-ray and XUV region by the integral equation method,” in X-Ray and UV Detectors, R. B. Hoover, M. W. Tate, eds., Proc. SPIE2278, 168–172 (1994).
[CrossRef]

J. F. Seely, L. I. Goray, “Normal incidence multilayer gratings for the extreme ultraviolet region: experimental measurements and computational modeling,” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. Walker, eds., Proc. SPIE3766, 364–370 (1999).
[CrossRef]

L. I. Goray, J. F. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements,” Appl. Opt. (to be published).

L. I. Goray, “Modified integral method and real electromagnetic properties of echelles,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. I. Sutherland, D. W. Prather, I. Cindrich, eds., Proc. SPIE4291 (to be published).

L. I. Goray, “Rigorous integral method in application to computing diffraction on relief gratings working in wavelength range from microwaves to x-ray,” in Application and Theory of Periodic Structures, T. Jannson, N. C. Gallagher, eds., Proc. SPIE2532, 427–433 (1995).
[CrossRef]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Gum, J. S.

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Holland, G. E.

Hunter, W. R.

Keski-Kuha, R. A. M.

Kondratenko, V. V.

Yu. A. Uspenskii, V. E. Levashov, A. V. Vinogradov, A. I. Fedorenko, V. V. Kondratenko, Yu. P. Pershin, E. N. Zubarev, V. Yu. Fedotov, “High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35–50 nm,” Opt. Lett. 23, 771–773 (1998).
[CrossRef]

Yu. A. Uspenskii, J. F. Seely, N. L. Popov, A. V. Vinogradov, Yu. P. Pershin, V. V. Kondratenko are preparing a manuscript to be called “New method for the determination of EUV optical constants in chemically active materials: application to Sc and Ti.”

D. L. Voronov, E. N. Zubarev, V. V. Kondratenko, A. V. Pen’kov, Yu. P. Pershin, A. G. Ponomarenko, A. V. Vinogradov, Yu. A. Uspenskii, J. F. Seely, “Structure, thermal stability and reflectivity of Sc/Si and Sc/W/Si/W multilayer x-ray mirrors,” in Soft X-Ray Lasers and Applications IV, E. E. Fill, J. J. G. Rocca, eds., Proc. SPIE4505 (to be published).

Korendyke, C. M.

J. L. Culhane, C. M. Korendyke, T. Watanabe, G. A. Doschek, “An extreme ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. Korendyke, O. Siegmund, B. Woodgate, eds., Proc. SPIE4139, 294–312 (2000).
[CrossRef]

Kowalski, M. P.

Levashov, V. E.

Montcalm, C.

Neupert, W. M.

Palik, E. D.

E. D. Palik, “Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).

Pen’kov, A. V.

D. L. Voronov, E. N. Zubarev, V. V. Kondratenko, A. V. Pen’kov, Yu. P. Pershin, A. G. Ponomarenko, A. V. Vinogradov, Yu. A. Uspenskii, J. F. Seely, “Structure, thermal stability and reflectivity of Sc/Si and Sc/W/Si/W multilayer x-ray mirrors,” in Soft X-Ray Lasers and Applications IV, E. E. Fill, J. J. G. Rocca, eds., Proc. SPIE4505 (to be published).

Pershin, Yu. P.

Yu. A. Uspenskii, V. E. Levashov, A. V. Vinogradov, A. I. Fedorenko, V. V. Kondratenko, Yu. P. Pershin, E. N. Zubarev, V. Yu. Fedotov, “High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35–50 nm,” Opt. Lett. 23, 771–773 (1998).
[CrossRef]

D. L. Voronov, E. N. Zubarev, V. V. Kondratenko, A. V. Pen’kov, Yu. P. Pershin, A. G. Ponomarenko, A. V. Vinogradov, Yu. A. Uspenskii, J. F. Seely, “Structure, thermal stability and reflectivity of Sc/Si and Sc/W/Si/W multilayer x-ray mirrors,” in Soft X-Ray Lasers and Applications IV, E. E. Fill, J. J. G. Rocca, eds., Proc. SPIE4505 (to be published).

Yu. A. Uspenskii, J. F. Seely, N. L. Popov, A. V. Vinogradov, Yu. P. Pershin, V. V. Kondratenko are preparing a manuscript to be called “New method for the determination of EUV optical constants in chemically active materials: application to Sc and Ti.”

Ponomarenko, A. G.

D. L. Voronov, E. N. Zubarev, V. V. Kondratenko, A. V. Pen’kov, Yu. P. Pershin, A. G. Ponomarenko, A. V. Vinogradov, Yu. A. Uspenskii, J. F. Seely, “Structure, thermal stability and reflectivity of Sc/Si and Sc/W/Si/W multilayer x-ray mirrors,” in Soft X-Ray Lasers and Applications IV, E. E. Fill, J. J. G. Rocca, eds., Proc. SPIE4505 (to be published).

Popov, N. L.

Yu. A. Uspenskii, J. F. Seely, N. L. Popov, A. V. Vinogradov, Yu. P. Pershin, V. V. Kondratenko are preparing a manuscript to be called “New method for the determination of EUV optical constants in chemically active materials: application to Sc and Ti.”

Purcell, J. D.

R. Tousey, J.-D. F. Bartoe, G. E. Brueckner, J. D. Purcell, “Extreme ultraviolet spectroheliograph ATM experiment SO82A,” Appl. Opt. 16, 870–878 (1977).
[PubMed]

U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170 to 625 Å (E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., 1987).

Rife, J. C.

Sadeghi, H. R.

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

Seely, J. F.

C. Montcalm, S. Bajt, J. F. Seely, “MoRu-Be multilayer-coated grating with 10.4% normal-incidence efficiency near the 11.4-nm wavelength,” Opt. Lett. 26, 125–127 (2001).
[CrossRef]

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340 Å wavelength region of replicas of the Skylab 3600 line/mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated concave diffraction grating in the 136–142 Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

J. F. Seely, L. I. Goray, “Normal incidence multilayer gratings for the extreme ultraviolet region: experimental measurements and computational modeling,” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. Walker, eds., Proc. SPIE3766, 364–370 (1999).
[CrossRef]

L. I. Goray, J. F. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements,” Appl. Opt. (to be published).

Yu. A. Uspenskii, J. F. Seely, N. L. Popov, A. V. Vinogradov, Yu. P. Pershin, V. V. Kondratenko are preparing a manuscript to be called “New method for the determination of EUV optical constants in chemically active materials: application to Sc and Ti.”

J. F. Seely, “Multilayer grating for the extreme ultraviolet spectrometer (EIS),” in X-Ray Optics, Instruments, and Missions IV, “R. Hoover, A. Walker, eds., Proc. SPIE4138, 174–181 (2000).
[CrossRef]

D. L. Voronov, E. N. Zubarev, V. V. Kondratenko, A. V. Pen’kov, Yu. P. Pershin, A. G. Ponomarenko, A. V. Vinogradov, Yu. A. Uspenskii, J. F. Seely, “Structure, thermal stability and reflectivity of Sc/Si and Sc/W/Si/W multilayer x-ray mirrors,” in Soft X-Ray Lasers and Applications IV, E. E. Fill, J. J. G. Rocca, eds., Proc. SPIE4505 (to be published).

Spiller, E.

E. Spiller, Soft X-Ray Optics (SPIE, Bellingham, Wash., 1994), p. 110.

Thomas, R. J.

Tousey, R.

Uspenskii, Yu. A.

Yu. A. Uspenskii, V. E. Levashov, A. V. Vinogradov, A. I. Fedorenko, V. V. Kondratenko, Yu. P. Pershin, E. N. Zubarev, V. Yu. Fedotov, “High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35–50 nm,” Opt. Lett. 23, 771–773 (1998).
[CrossRef]

Yu. A. Uspenskii, J. F. Seely, N. L. Popov, A. V. Vinogradov, Yu. P. Pershin, V. V. Kondratenko are preparing a manuscript to be called “New method for the determination of EUV optical constants in chemically active materials: application to Sc and Ti.”

D. L. Voronov, E. N. Zubarev, V. V. Kondratenko, A. V. Pen’kov, Yu. P. Pershin, A. G. Ponomarenko, A. V. Vinogradov, Yu. A. Uspenskii, J. F. Seely, “Structure, thermal stability and reflectivity of Sc/Si and Sc/W/Si/W multilayer x-ray mirrors,” in Soft X-Ray Lasers and Applications IV, E. E. Fill, J. J. G. Rocca, eds., Proc. SPIE4505 (to be published).

Vinogradov, A. V.

Yu. A. Uspenskii, V. E. Levashov, A. V. Vinogradov, A. I. Fedorenko, V. V. Kondratenko, Yu. P. Pershin, E. N. Zubarev, V. Yu. Fedotov, “High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35–50 nm,” Opt. Lett. 23, 771–773 (1998).
[CrossRef]

Yu. A. Uspenskii, J. F. Seely, N. L. Popov, A. V. Vinogradov, Yu. P. Pershin, V. V. Kondratenko are preparing a manuscript to be called “New method for the determination of EUV optical constants in chemically active materials: application to Sc and Ti.”

D. L. Voronov, E. N. Zubarev, V. V. Kondratenko, A. V. Pen’kov, Yu. P. Pershin, A. G. Ponomarenko, A. V. Vinogradov, Yu. A. Uspenskii, J. F. Seely, “Structure, thermal stability and reflectivity of Sc/Si and Sc/W/Si/W multilayer x-ray mirrors,” in Soft X-Ray Lasers and Applications IV, E. E. Fill, J. J. G. Rocca, eds., Proc. SPIE4505 (to be published).

Voronov, D. L.

D. L. Voronov, E. N. Zubarev, V. V. Kondratenko, A. V. Pen’kov, Yu. P. Pershin, A. G. Ponomarenko, A. V. Vinogradov, Yu. A. Uspenskii, J. F. Seely, “Structure, thermal stability and reflectivity of Sc/Si and Sc/W/Si/W multilayer x-ray mirrors,” in Soft X-Ray Lasers and Applications IV, E. E. Fill, J. J. G. Rocca, eds., Proc. SPIE4505 (to be published).

Watanabe, T.

J. L. Culhane, C. M. Korendyke, T. Watanabe, G. A. Doschek, “An extreme ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. Korendyke, O. Siegmund, B. Woodgate, eds., Proc. SPIE4139, 294–312 (2000).
[CrossRef]

Zubarev, E. N.

Yu. A. Uspenskii, V. E. Levashov, A. V. Vinogradov, A. I. Fedorenko, V. V. Kondratenko, Yu. P. Pershin, E. N. Zubarev, V. Yu. Fedotov, “High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35–50 nm,” Opt. Lett. 23, 771–773 (1998).
[CrossRef]

D. L. Voronov, E. N. Zubarev, V. V. Kondratenko, A. V. Pen’kov, Yu. P. Pershin, A. G. Ponomarenko, A. V. Vinogradov, Yu. A. Uspenskii, J. F. Seely, “Structure, thermal stability and reflectivity of Sc/Si and Sc/W/Si/W multilayer x-ray mirrors,” in Soft X-Ray Lasers and Applications IV, E. E. Fill, J. J. G. Rocca, eds., Proc. SPIE4505 (to be published).

Appl. Opt.

Astrophys. J.

J. W. Brosius, J. M. Davila, R. J. Thomas, “Calibration of the SERTS-95 spectrograph from iron line intensity ratios,” Astrophys. J. 497, L113–L116 (1998).
[CrossRef]

At. Data Nucl. Data Tables

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Nucl. Instrum. Methods A

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
[CrossRef]

Opt. Lett.

Phys. Scr.

U. Feldman, “Elemental abundances in the upper solar atmosphere,” Phys. Scr. 46, 202–220 (1992).
[CrossRef]

Rev. Sci. Instrum.

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

Other

D. L. Voronov, E. N. Zubarev, V. V. Kondratenko, A. V. Pen’kov, Yu. P. Pershin, A. G. Ponomarenko, A. V. Vinogradov, Yu. A. Uspenskii, J. F. Seely, “Structure, thermal stability and reflectivity of Sc/Si and Sc/W/Si/W multilayer x-ray mirrors,” in Soft X-Ray Lasers and Applications IV, E. E. Fill, J. J. G. Rocca, eds., Proc. SPIE4505 (to be published).

U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170 to 625 Å (E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., 1987).

Yu. A. Uspenskii, J. F. Seely, N. L. Popov, A. V. Vinogradov, Yu. P. Pershin, V. V. Kondratenko are preparing a manuscript to be called “New method for the determination of EUV optical constants in chemically active materials: application to Sc and Ti.”

E. D. Palik, “Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).

L. I. Goray, “Numerical analysis for relief gratings working in the soft x-ray and XUV region by the integral equation method,” in X-Ray and UV Detectors, R. B. Hoover, M. W. Tate, eds., Proc. SPIE2278, 168–172 (1994).
[CrossRef]

L. I. Goray, “Rigorous integral method in application to computing diffraction on relief gratings working in wavelength range from microwaves to x-ray,” in Application and Theory of Periodic Structures, T. Jannson, N. C. Gallagher, eds., Proc. SPIE2532, 427–433 (1995).
[CrossRef]

L. I. Goray, “Modified integral method for weak convergence problems of light scattering on relief grating,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. I. Sutherland, D. W. Prather, I. Cindrich, eds., Proc. SPIE4291 (to be published).

L. I. Goray, “Modified integral method and real electromagnetic properties of echelles,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. I. Sutherland, D. W. Prather, I. Cindrich, eds., Proc. SPIE4291 (to be published).

J. F. Seely, L. I. Goray, “Normal incidence multilayer gratings for the extreme ultraviolet region: experimental measurements and computational modeling,” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. Walker, eds., Proc. SPIE3766, 364–370 (1999).
[CrossRef]

L. I. Goray, J. F. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements,” Appl. Opt. (to be published).

E. Spiller, Soft X-Ray Optics (SPIE, Bellingham, Wash., 1994), p. 110.

J. L. Culhane, C. M. Korendyke, T. Watanabe, G. A. Doschek, “An extreme ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. Korendyke, O. Siegmund, B. Woodgate, eds., Proc. SPIE4139, 294–312 (2000).
[CrossRef]

J. F. Seely, “Multilayer grating for the extreme ultraviolet spectrometer (EIS),” in X-Ray Optics, Instruments, and Missions IV, “R. Hoover, A. Walker, eds., Proc. SPIE4138, 174–181 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Solar spectrum in the 39–45-nm wavelength range from the 2 December 1973 impulsive EUV event recorded by the NRL SO82A spectroheliograph on Skylab.

Fig. 2
Fig. 2

Measured (data points) and calculated (curve) reflectance of a Sc-Si test mirror.

Fig. 3
Fig. 3

Sc-Si grating efficiencies measured at a wavelength of 40 nm and at angles of incidence of (a) 6° and (b) 15.5°.

Fig. 4
Fig. 4

Sc-Si grating efficiencies measured at a wavelength of 19 nm and at angles of incidence of (a) 6° and (b) 15.5°.

Fig. 5
Fig. 5

Data points are the measured peak efficiencies of the Sc-Si grating in the -1 and the 0 orders for an angle of incidence of 6°. The curves are the calculated efficiencies at an angle of 6°.

Fig. 6
Fig. 6

Data points are the measured 0-order efficiency of the Sc-Si grating at an angle of incidence of 6°. The curve is the calculated reflectance of a Sc-Si multilayer coating at 6° incidence and multiplied by 0.21, which represents the 0-order groove efficiency.

Fig. 7
Fig. 7

Groove profile used for the calculation of the Sc-Si grating efficiency. The groove dimensions are normalized to the groove period (278 nm)

Fig. 8
Fig. 8

(a) Comparison of the measured (data points) Sc-Si grating efficiency in the -1 and the 0 orders and the calculated efficiencies (curves) at an angle of incidence of 6°. (b) The calculated groove efficiency at 6° incidence.

Fig. 9
Fig. 9

(a) Calculated groove efficiency of the optimized grating substrate. (b) The calculated efficiency of the optimized Sc-Si grating.

Metrics