Abstract

When three-dimensional optical topometry of technical surfaces is performed, one major problem is that often the local reflectance of the object’s surface varies within a wide range. This leads to overexposed and underexposed areas on the detector, where no measurements can be made. To overcome this problem, we have developed a method that extends the dynamic range of an imaging system. As an example we implemented this method to a measurement system that is based on fringe projection with a data projector and a color CCD camera. By projection of quasi-monochromatic fringes a different dynamic range in each of the three color channels of the camera is achieved. Hence the overall dynamic range of the system is increased by a factor larger than 5.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
    [CrossRef]
  2. R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
    [CrossRef]
  3. R. W. Malz, “Codierte Lichtstrukturen für 3-D-Messtechnik und Inspektion,” Ph.D. dissertation (Institut für Technische Optik, Universität Stuttgart, Stuttgart, Germany, 1992).
  4. G. Sansoni, S. Corini, S. Lazzari, R. Rodella, F. Docchio, “Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications,” Appl. Opt. 36, 4463–4472 (1997).
    [CrossRef] [PubMed]
  5. G. Frankowski, “Optisches 3D-Meßsystem zur Mikroprofil- und Rauheitsmessung,” FM 106, 612–615 (1998).
  6. K. L. Boyer, A. C. Kak, “Color-encoded structured light for rapid active ranging,” IEEE Trans. Pattern Anal. Mach. Intell. 9, 14–27 (1987).
    [CrossRef] [PubMed]
  7. D. Caspi, N. Kiryati, J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
    [CrossRef]
  8. P. S. Huang, Q. Hu, F. Jin, F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
    [CrossRef]
  9. H. Gärtner, P. Lehle, H. J. Tiziani, C. Voland, “Structured light measurement by double-scan technique,” in Vision Systems: Sensors, Sensor Systems, and Components, O. Loffeld, ed., Proc. SPIE2784, 21–30 (1996).
    [CrossRef]
  10. S. Kakunai, T. Sakamoto, K. Iwata, “Profile measurement taken with liquid-crystal gratings,” Appl. Opt. 38, 2824–2828 (1999).
    [CrossRef]
  11. M. Schönleber, H. J. Tiziani, “Fast and flexible shape control with adaptive LCD fringe masks,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 35–42 (1997).
    [CrossRef]
  12. M. Schönleber, “Optische Inspektion mit Flüssigkristall-Lichtmodulatoren,” Ph.D. dissertation (Institut für Technische Optik, Universität Stuttgart, Stuttgart, Germany, 1999).
  13. K.-P. Proll, J.-M. Nivet, C. Voland, H. J. Tiziani, “Application of a liquid-crystal spatial light modulator for brightness adaptation in microscopic topometry,” Appl. Opt. 39, 6430–6435 (2000).
    [CrossRef]
  14. P. Lehle, H. Gärtner, H. J. Tiziani, C. Voland, “Coded light setups with optimised transformations of code indices,” in Vision Systems: Sensors, Sensor Systems, and Components, O. Loffeld, ed., Proc. SPIE2784, 12–20 (1996).
    [CrossRef]

2000 (2)

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

K.-P. Proll, J.-M. Nivet, C. Voland, H. J. Tiziani, “Application of a liquid-crystal spatial light modulator for brightness adaptation in microscopic topometry,” Appl. Opt. 39, 6430–6435 (2000).
[CrossRef]

1999 (2)

P. S. Huang, Q. Hu, F. Jin, F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
[CrossRef]

S. Kakunai, T. Sakamoto, K. Iwata, “Profile measurement taken with liquid-crystal gratings,” Appl. Opt. 38, 2824–2828 (1999).
[CrossRef]

1998 (2)

D. Caspi, N. Kiryati, J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

G. Frankowski, “Optisches 3D-Meßsystem zur Mikroprofil- und Rauheitsmessung,” FM 106, 612–615 (1998).

1997 (2)

1987 (1)

K. L. Boyer, A. C. Kak, “Color-encoded structured light for rapid active ranging,” IEEE Trans. Pattern Anal. Mach. Intell. 9, 14–27 (1987).
[CrossRef] [PubMed]

Boyer, K. L.

K. L. Boyer, A. C. Kak, “Color-encoded structured light for rapid active ranging,” IEEE Trans. Pattern Anal. Mach. Intell. 9, 14–27 (1987).
[CrossRef] [PubMed]

Caspi, D.

D. Caspi, N. Kiryati, J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

Chiang, F.-P.

P. S. Huang, Q. Hu, F. Jin, F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
[CrossRef]

Corini, S.

Docchio, F.

Fleischer, M.

R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[CrossRef]

Frankowski, G.

G. Frankowski, “Optisches 3D-Meßsystem zur Mikroprofil- und Rauheitsmessung,” FM 106, 612–615 (1998).

Gärtner, H.

H. Gärtner, P. Lehle, H. J. Tiziani, C. Voland, “Structured light measurement by double-scan technique,” in Vision Systems: Sensors, Sensor Systems, and Components, O. Loffeld, ed., Proc. SPIE2784, 21–30 (1996).
[CrossRef]

P. Lehle, H. Gärtner, H. J. Tiziani, C. Voland, “Coded light setups with optimised transformations of code indices,” in Vision Systems: Sensors, Sensor Systems, and Components, O. Loffeld, ed., Proc. SPIE2784, 12–20 (1996).
[CrossRef]

Gerber, J.

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Hu, Q.

P. S. Huang, Q. Hu, F. Jin, F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
[CrossRef]

Huang, P. S.

P. S. Huang, Q. Hu, F. Jin, F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
[CrossRef]

Iwata, K.

Jin, F.

P. S. Huang, Q. Hu, F. Jin, F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
[CrossRef]

Kak, A. C.

K. L. Boyer, A. C. Kak, “Color-encoded structured light for rapid active ranging,” IEEE Trans. Pattern Anal. Mach. Intell. 9, 14–27 (1987).
[CrossRef] [PubMed]

Kakunai, S.

Kiryati, N.

D. Caspi, N. Kiryati, J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

Kowarschik, R.

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Kühmstedt, P.

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Lazzari, S.

Lehle, P.

H. Gärtner, P. Lehle, H. J. Tiziani, C. Voland, “Structured light measurement by double-scan technique,” in Vision Systems: Sensors, Sensor Systems, and Components, O. Loffeld, ed., Proc. SPIE2784, 21–30 (1996).
[CrossRef]

P. Lehle, H. Gärtner, H. J. Tiziani, C. Voland, “Coded light setups with optimised transformations of code indices,” in Vision Systems: Sensors, Sensor Systems, and Components, O. Loffeld, ed., Proc. SPIE2784, 12–20 (1996).
[CrossRef]

Malz, R. W.

R. W. Malz, “Codierte Lichtstrukturen für 3-D-Messtechnik und Inspektion,” Ph.D. dissertation (Institut für Technische Optik, Universität Stuttgart, Stuttgart, Germany, 1992).

Nivet, J.-M.

Notni, G.

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Proll, K.-P.

Rodella, R.

Sakamoto, T.

Sansoni, G.

Schönleber, M.

M. Schönleber, H. J. Tiziani, “Fast and flexible shape control with adaptive LCD fringe masks,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 35–42 (1997).
[CrossRef]

M. Schönleber, “Optische Inspektion mit Flüssigkristall-Lichtmodulatoren,” Ph.D. dissertation (Institut für Technische Optik, Universität Stuttgart, Stuttgart, Germany, 1999).

Schreiber, W.

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

Shamir, J.

D. Caspi, N. Kiryati, J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

Tiziani, H. J.

K.-P. Proll, J.-M. Nivet, C. Voland, H. J. Tiziani, “Application of a liquid-crystal spatial light modulator for brightness adaptation in microscopic topometry,” Appl. Opt. 39, 6430–6435 (2000).
[CrossRef]

R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[CrossRef]

H. Gärtner, P. Lehle, H. J. Tiziani, C. Voland, “Structured light measurement by double-scan technique,” in Vision Systems: Sensors, Sensor Systems, and Components, O. Loffeld, ed., Proc. SPIE2784, 21–30 (1996).
[CrossRef]

M. Schönleber, H. J. Tiziani, “Fast and flexible shape control with adaptive LCD fringe masks,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 35–42 (1997).
[CrossRef]

P. Lehle, H. Gärtner, H. J. Tiziani, C. Voland, “Coded light setups with optimised transformations of code indices,” in Vision Systems: Sensors, Sensor Systems, and Components, O. Loffeld, ed., Proc. SPIE2784, 12–20 (1996).
[CrossRef]

Voland, C.

K.-P. Proll, J.-M. Nivet, C. Voland, H. J. Tiziani, “Application of a liquid-crystal spatial light modulator for brightness adaptation in microscopic topometry,” Appl. Opt. 39, 6430–6435 (2000).
[CrossRef]

H. Gärtner, P. Lehle, H. J. Tiziani, C. Voland, “Structured light measurement by double-scan technique,” in Vision Systems: Sensors, Sensor Systems, and Components, O. Loffeld, ed., Proc. SPIE2784, 21–30 (1996).
[CrossRef]

P. Lehle, H. Gärtner, H. J. Tiziani, C. Voland, “Coded light setups with optimised transformations of code indices,” in Vision Systems: Sensors, Sensor Systems, and Components, O. Loffeld, ed., Proc. SPIE2784, 12–20 (1996).
[CrossRef]

Windecker, R.

R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[CrossRef]

Appl. Opt. (3)

FM (1)

G. Frankowski, “Optisches 3D-Meßsystem zur Mikroprofil- und Rauheitsmessung,” FM 106, 612–615 (1998).

IEEE Trans. Pattern Anal. Mach. Intell. (2)

K. L. Boyer, A. C. Kak, “Color-encoded structured light for rapid active ranging,” IEEE Trans. Pattern Anal. Mach. Intell. 9, 14–27 (1987).
[CrossRef] [PubMed]

D. Caspi, N. Kiryati, J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

Opt. Eng. (3)

P. S. Huang, Q. Hu, F. Jin, F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
[CrossRef]

R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[CrossRef]

R. Windecker, M. Fleischer, H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[CrossRef]

Other (5)

R. W. Malz, “Codierte Lichtstrukturen für 3-D-Messtechnik und Inspektion,” Ph.D. dissertation (Institut für Technische Optik, Universität Stuttgart, Stuttgart, Germany, 1992).

M. Schönleber, H. J. Tiziani, “Fast and flexible shape control with adaptive LCD fringe masks,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 35–42 (1997).
[CrossRef]

M. Schönleber, “Optische Inspektion mit Flüssigkristall-Lichtmodulatoren,” Ph.D. dissertation (Institut für Technische Optik, Universität Stuttgart, Stuttgart, Germany, 1999).

H. Gärtner, P. Lehle, H. J. Tiziani, C. Voland, “Structured light measurement by double-scan technique,” in Vision Systems: Sensors, Sensor Systems, and Components, O. Loffeld, ed., Proc. SPIE2784, 21–30 (1996).
[CrossRef]

P. Lehle, H. Gärtner, H. J. Tiziani, C. Voland, “Coded light setups with optimised transformations of code indices,” in Vision Systems: Sensors, Sensor Systems, and Components, O. Loffeld, ed., Proc. SPIE2784, 12–20 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Dynamic ranges of the color channels 2 and 3 are increased by a factor of α′ and β′, respectively.

Fig. 2
Fig. 2

Principle of experimental setup. The z axis is the optical axis of the camera. The triangulation angle is γ ≅ 33°.

Fig. 3
Fig. 3

Sinusoidally milled steel block on a white plane as seen by the green color channel of the camera. The object is illuminated by the DMD projector with maximum intensity in the green color channel.

Fig. 4
Fig. 4

Red color channel of the camera. Same illumination as in Fig. 3.

Fig. 5
Fig. 5

Blue color channel of the camera.

Fig. 6
Fig. 6

Topography of the sinusoidally milled upper surface of the object with respect to the green color channel of the camera. Height values are gray-level encoded. White areas mean that there are no valid height values. The topography of the object shows large gaps that are due to overexposure corresponding to 27.4% of the object area (100 mm × 216 mm).

Fig. 7
Fig. 7

Topography with respect to the red color channel of the camera. The gaps due to overexposure are strongly reduced, whereas underexposed areas emerge. 15.0% of the object area could not be measured.

Fig. 8
Fig. 8

Topography with respect to the blue color channel. Gaps due to overexposure are reduced to a minimum, whereas those due to underexposure widen significantly. A total of 42.6% of the object could not be measured.

Fig. 9
Fig. 9

Combined topography. Gaps are strongly reduced to 2% of the object area.

Tables (2)

Tables Icon

Table 1 Parameters of the Imaging System

Tables Icon

Table 2 Number and Percentage of Invalid Samplesa in the Topography within the Object Areab

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

RC, GC, BC=aRRaRGaRBaGRaGGaGBaBRaBGaBBA×kR0,00kG000kBKPRPGPBP+R0, G0, B0.
A=0.500.4100.051.000.1300.191.00.
IC1=I0,IC2=αI0with 1αβ,IC3=βI0.
GC:RC:BC=1:0.41:0.19.

Metrics