Abstract

We analyze the phase-matching conditions for second-harmonic generation (SHG) and optical parametric oscillation (OPO) in birefringent nonlinear semiconductor waveguides and apply these results to the model system of ZnGeP2 on a GaP substrate. The analyses and numerical results show that phase matching can be achieved for OPO and SHG for reasonable guide thicknesses throughout much of the infrared, indicating significant potential applications for nonlinear birefringent waveguides. For the fundamental mode of a relatively thick guide the region of phase matching and the phase-matching angles are similar to those in bulk material. However, the waveguide has the added flexibility that phase-matched coupling can occur between the various modes of the guide. For example, the phase-matching region for SHG can be considerably extended by coupling the pump into the guide in the fundamental, m = 0, mode and phase matching to the m = 2 mode of the second harmonic. Significantly, the results indicate, among other things, that ZnGeP2 waveguides with harmonic output in the m = 2 mode can be used for efficient SHG from input radiation in the 9.6–10.6-µm region where bulk efficiencies in this wavelength range are too small to be useful.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription