Abstract

The application of lasers in high-precision measurements and the demand for accuracy make the plane-wave model of laser beams unsatisfactory. Measurements of the variance of the transverse components of the photon impulse are essential for wavelength determination. Accuracy evaluation of the relevant calculations is thus an integral part of the assessment of the wavelength of stabilized-laser radiation. We present a propagation-of-error analysis on variance calculations when digitized intensity profiles are obtained by means of silicon video cameras. Image clipping criteria are obtained that maximize the accuracy of the computed result.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Basile, A. Bergamin, G. Cavagnero, G. Mana, “Phase modulation in high-resolution optical interferometry,” Metrologia 28, 455–461 (1992).
    [CrossRef]
  2. B. Boldermann, G. Boensch, H. Knoeckel, A. Nicolaus, E. Tiemann, “Wavelength measurements of three iodine lines between 780 nm and 795 nm,” Metrologia 35, 105–113 (1998).
    [CrossRef]
  3. A. Bergamin, G. Cavagnero, G. Mana, G. Zosi, “Scanning x-ray interferometry and the silicon lattice parameter: toward 10-9 relative uncertainty?” Eur. Phys. J. B 9, 225–232 (1999).
    [CrossRef]
  4. A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “A Fourier optical model of two-beam scanning laser interferometers,” Eur. Phys. J. D 5, 433–440 (1999).
    [CrossRef]
  5. A. E. Siegman, “New development in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).
    [CrossRef]
  6. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 77–90.
  7. R. P. Loce, R. E. Jodoin, “Sampling theorem for geometric moment determination and its application to a laser beam position detector,” Appl. Opt. 29, 3835–3843 (1990).
    [CrossRef] [PubMed]
  8. A. E. Siegman, M. W. Sasnett, T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
    [CrossRef]
  9. R. D. Jones, T. R. Scott, “Error propagation in laser beam spatial parameters,” Opt. Quantum Electron. 26, 25–34 (1994).
    [CrossRef]
  10. Y. Champagne, C. Paré, P. A. Bélanger, “Method for direct measurement of the variance of laser beams,” Opt. Lett. 19, 505–507 (1994).
    [CrossRef] [PubMed]
  11. A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “Beam astigmatism in laser interferometry,” IEEE Trans. Instrum. Meas. 46, 196–200 (1997).
    [CrossRef]
  12. B. A. Ward, S. Assa, B. W. Davis, C. B. Edwards, P. Muys, “Investigation of the accuracy of M2 measurement of CO2 laser beams,” in Beam Control, Diagnostic, Standard, and Propagation, L. W. Austin, A. Giesen, D. H. Leslie, H. Weichel, eds., Proc. SPIE2375, 335–348 (1995).
  13. “Lasers and laser-related equipment—test methods for laser beam parameters—beam widths, divergence angle and beam propagation factor,” ISO/FDIS 11146:1999(E) (International Organization for Standardization, Geneva, Switzerland, 1999).
  14. D. Gloge, D. Marcuse, “Formal theory of light rays,” J. Opt. Soc. Am. 59, 1629–1631 (1969).
    [CrossRef]
  15. L. C. Baird, “Moments of a wave packet,” Am. J. Phys. 40, 327–329 (1972).
    [CrossRef]
  16. S. Lavi, R. Prochaska, E. Keren, “Generalized beam parameter and transformation laws for partially coherent light,” Appl. Opt. 27, 3696–3703 (1988).
    [CrossRef] [PubMed]
  17. M. A. Porras, J. Alda, E. Bernabeu, “Complex beam parameter and ABCD law for non-Gaussian and nonspherical light beams,” Appl. Opt. 31, 6389–6402 (1992).
    [CrossRef] [PubMed]
  18. M. W. Sasnett, T. F. Johnston, “Beam characterization and measurement of propagation attributes,” in Laser Beam Diagnostic, R. N. Hindy, Y. Kohanzadeh, eds., Proc. SPIE1414, 21–32 (1991).
    [CrossRef]
  19. Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, Switzerland, 1993).
  20. C. D. Meyer, G. W. Stewart, “Derivatives and perturbations of eigenvectors,” SIAM (Soc. Ind. Appl. Math) J. Numer. Anal. 25, 679–691 (1988).
  21. R. Mugno, “La macchina di misura a coordinate esperta,” Ph.D. dissertation (Politecnico di Torino, Torino, Italy, 1998).
  22. CCIR camera Model 6710 (Cohu, Inc., P.O. Box 85623, San Diego, California 92186).

1999 (2)

A. Bergamin, G. Cavagnero, G. Mana, G. Zosi, “Scanning x-ray interferometry and the silicon lattice parameter: toward 10-9 relative uncertainty?” Eur. Phys. J. B 9, 225–232 (1999).
[CrossRef]

A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “A Fourier optical model of two-beam scanning laser interferometers,” Eur. Phys. J. D 5, 433–440 (1999).
[CrossRef]

1998 (1)

B. Boldermann, G. Boensch, H. Knoeckel, A. Nicolaus, E. Tiemann, “Wavelength measurements of three iodine lines between 780 nm and 795 nm,” Metrologia 35, 105–113 (1998).
[CrossRef]

1997 (1)

A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “Beam astigmatism in laser interferometry,” IEEE Trans. Instrum. Meas. 46, 196–200 (1997).
[CrossRef]

1994 (2)

R. D. Jones, T. R. Scott, “Error propagation in laser beam spatial parameters,” Opt. Quantum Electron. 26, 25–34 (1994).
[CrossRef]

Y. Champagne, C. Paré, P. A. Bélanger, “Method for direct measurement of the variance of laser beams,” Opt. Lett. 19, 505–507 (1994).
[CrossRef] [PubMed]

1992 (2)

G. Basile, A. Bergamin, G. Cavagnero, G. Mana, “Phase modulation in high-resolution optical interferometry,” Metrologia 28, 455–461 (1992).
[CrossRef]

M. A. Porras, J. Alda, E. Bernabeu, “Complex beam parameter and ABCD law for non-Gaussian and nonspherical light beams,” Appl. Opt. 31, 6389–6402 (1992).
[CrossRef] [PubMed]

1991 (1)

A. E. Siegman, M. W. Sasnett, T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

1990 (1)

1988 (2)

C. D. Meyer, G. W. Stewart, “Derivatives and perturbations of eigenvectors,” SIAM (Soc. Ind. Appl. Math) J. Numer. Anal. 25, 679–691 (1988).

S. Lavi, R. Prochaska, E. Keren, “Generalized beam parameter and transformation laws for partially coherent light,” Appl. Opt. 27, 3696–3703 (1988).
[CrossRef] [PubMed]

1972 (1)

L. C. Baird, “Moments of a wave packet,” Am. J. Phys. 40, 327–329 (1972).
[CrossRef]

1969 (1)

Alda, J.

Assa, S.

B. A. Ward, S. Assa, B. W. Davis, C. B. Edwards, P. Muys, “Investigation of the accuracy of M2 measurement of CO2 laser beams,” in Beam Control, Diagnostic, Standard, and Propagation, L. W. Austin, A. Giesen, D. H. Leslie, H. Weichel, eds., Proc. SPIE2375, 335–348 (1995).

Baird, L. C.

L. C. Baird, “Moments of a wave packet,” Am. J. Phys. 40, 327–329 (1972).
[CrossRef]

Basile, G.

G. Basile, A. Bergamin, G. Cavagnero, G. Mana, “Phase modulation in high-resolution optical interferometry,” Metrologia 28, 455–461 (1992).
[CrossRef]

Bélanger, P. A.

Bergamin, A.

A. Bergamin, G. Cavagnero, G. Mana, G. Zosi, “Scanning x-ray interferometry and the silicon lattice parameter: toward 10-9 relative uncertainty?” Eur. Phys. J. B 9, 225–232 (1999).
[CrossRef]

A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “A Fourier optical model of two-beam scanning laser interferometers,” Eur. Phys. J. D 5, 433–440 (1999).
[CrossRef]

A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “Beam astigmatism in laser interferometry,” IEEE Trans. Instrum. Meas. 46, 196–200 (1997).
[CrossRef]

G. Basile, A. Bergamin, G. Cavagnero, G. Mana, “Phase modulation in high-resolution optical interferometry,” Metrologia 28, 455–461 (1992).
[CrossRef]

Bernabeu, E.

Boensch, G.

B. Boldermann, G. Boensch, H. Knoeckel, A. Nicolaus, E. Tiemann, “Wavelength measurements of three iodine lines between 780 nm and 795 nm,” Metrologia 35, 105–113 (1998).
[CrossRef]

Boldermann, B.

B. Boldermann, G. Boensch, H. Knoeckel, A. Nicolaus, E. Tiemann, “Wavelength measurements of three iodine lines between 780 nm and 795 nm,” Metrologia 35, 105–113 (1998).
[CrossRef]

Cavagnero, G.

A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “A Fourier optical model of two-beam scanning laser interferometers,” Eur. Phys. J. D 5, 433–440 (1999).
[CrossRef]

A. Bergamin, G. Cavagnero, G. Mana, G. Zosi, “Scanning x-ray interferometry and the silicon lattice parameter: toward 10-9 relative uncertainty?” Eur. Phys. J. B 9, 225–232 (1999).
[CrossRef]

A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “Beam astigmatism in laser interferometry,” IEEE Trans. Instrum. Meas. 46, 196–200 (1997).
[CrossRef]

G. Basile, A. Bergamin, G. Cavagnero, G. Mana, “Phase modulation in high-resolution optical interferometry,” Metrologia 28, 455–461 (1992).
[CrossRef]

Champagne, Y.

Cordiali, L.

A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “A Fourier optical model of two-beam scanning laser interferometers,” Eur. Phys. J. D 5, 433–440 (1999).
[CrossRef]

A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “Beam astigmatism in laser interferometry,” IEEE Trans. Instrum. Meas. 46, 196–200 (1997).
[CrossRef]

Davis, B. W.

B. A. Ward, S. Assa, B. W. Davis, C. B. Edwards, P. Muys, “Investigation of the accuracy of M2 measurement of CO2 laser beams,” in Beam Control, Diagnostic, Standard, and Propagation, L. W. Austin, A. Giesen, D. H. Leslie, H. Weichel, eds., Proc. SPIE2375, 335–348 (1995).

Edwards, C. B.

B. A. Ward, S. Assa, B. W. Davis, C. B. Edwards, P. Muys, “Investigation of the accuracy of M2 measurement of CO2 laser beams,” in Beam Control, Diagnostic, Standard, and Propagation, L. W. Austin, A. Giesen, D. H. Leslie, H. Weichel, eds., Proc. SPIE2375, 335–348 (1995).

Gloge, D.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 77–90.

Jodoin, R. E.

Johnston, T. F.

A. E. Siegman, M. W. Sasnett, T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

M. W. Sasnett, T. F. Johnston, “Beam characterization and measurement of propagation attributes,” in Laser Beam Diagnostic, R. N. Hindy, Y. Kohanzadeh, eds., Proc. SPIE1414, 21–32 (1991).
[CrossRef]

Jones, R. D.

R. D. Jones, T. R. Scott, “Error propagation in laser beam spatial parameters,” Opt. Quantum Electron. 26, 25–34 (1994).
[CrossRef]

Keren, E.

Knoeckel, H.

B. Boldermann, G. Boensch, H. Knoeckel, A. Nicolaus, E. Tiemann, “Wavelength measurements of three iodine lines between 780 nm and 795 nm,” Metrologia 35, 105–113 (1998).
[CrossRef]

Lavi, S.

Loce, R. P.

Mana, G.

A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “A Fourier optical model of two-beam scanning laser interferometers,” Eur. Phys. J. D 5, 433–440 (1999).
[CrossRef]

A. Bergamin, G. Cavagnero, G. Mana, G. Zosi, “Scanning x-ray interferometry and the silicon lattice parameter: toward 10-9 relative uncertainty?” Eur. Phys. J. B 9, 225–232 (1999).
[CrossRef]

A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “Beam astigmatism in laser interferometry,” IEEE Trans. Instrum. Meas. 46, 196–200 (1997).
[CrossRef]

G. Basile, A. Bergamin, G. Cavagnero, G. Mana, “Phase modulation in high-resolution optical interferometry,” Metrologia 28, 455–461 (1992).
[CrossRef]

Marcuse, D.

Meyer, C. D.

C. D. Meyer, G. W. Stewart, “Derivatives and perturbations of eigenvectors,” SIAM (Soc. Ind. Appl. Math) J. Numer. Anal. 25, 679–691 (1988).

Mugno, R.

R. Mugno, “La macchina di misura a coordinate esperta,” Ph.D. dissertation (Politecnico di Torino, Torino, Italy, 1998).

Muys, P.

B. A. Ward, S. Assa, B. W. Davis, C. B. Edwards, P. Muys, “Investigation of the accuracy of M2 measurement of CO2 laser beams,” in Beam Control, Diagnostic, Standard, and Propagation, L. W. Austin, A. Giesen, D. H. Leslie, H. Weichel, eds., Proc. SPIE2375, 335–348 (1995).

Nicolaus, A.

B. Boldermann, G. Boensch, H. Knoeckel, A. Nicolaus, E. Tiemann, “Wavelength measurements of three iodine lines between 780 nm and 795 nm,” Metrologia 35, 105–113 (1998).
[CrossRef]

Paré, C.

Porras, M. A.

Prochaska, R.

Sasnett, M. W.

A. E. Siegman, M. W. Sasnett, T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

M. W. Sasnett, T. F. Johnston, “Beam characterization and measurement of propagation attributes,” in Laser Beam Diagnostic, R. N. Hindy, Y. Kohanzadeh, eds., Proc. SPIE1414, 21–32 (1991).
[CrossRef]

Scott, T. R.

R. D. Jones, T. R. Scott, “Error propagation in laser beam spatial parameters,” Opt. Quantum Electron. 26, 25–34 (1994).
[CrossRef]

Siegman, A. E.

A. E. Siegman, M. W. Sasnett, T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

A. E. Siegman, “New development in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).
[CrossRef]

Stewart, G. W.

C. D. Meyer, G. W. Stewart, “Derivatives and perturbations of eigenvectors,” SIAM (Soc. Ind. Appl. Math) J. Numer. Anal. 25, 679–691 (1988).

Tiemann, E.

B. Boldermann, G. Boensch, H. Knoeckel, A. Nicolaus, E. Tiemann, “Wavelength measurements of three iodine lines between 780 nm and 795 nm,” Metrologia 35, 105–113 (1998).
[CrossRef]

Ward, B. A.

B. A. Ward, S. Assa, B. W. Davis, C. B. Edwards, P. Muys, “Investigation of the accuracy of M2 measurement of CO2 laser beams,” in Beam Control, Diagnostic, Standard, and Propagation, L. W. Austin, A. Giesen, D. H. Leslie, H. Weichel, eds., Proc. SPIE2375, 335–348 (1995).

Zosi, G.

A. Bergamin, G. Cavagnero, G. Mana, G. Zosi, “Scanning x-ray interferometry and the silicon lattice parameter: toward 10-9 relative uncertainty?” Eur. Phys. J. B 9, 225–232 (1999).
[CrossRef]

Am. J. Phys. (1)

L. C. Baird, “Moments of a wave packet,” Am. J. Phys. 40, 327–329 (1972).
[CrossRef]

Appl. Opt. (3)

Eur. Phys. J. B (1)

A. Bergamin, G. Cavagnero, G. Mana, G. Zosi, “Scanning x-ray interferometry and the silicon lattice parameter: toward 10-9 relative uncertainty?” Eur. Phys. J. B 9, 225–232 (1999).
[CrossRef]

Eur. Phys. J. D (1)

A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “A Fourier optical model of two-beam scanning laser interferometers,” Eur. Phys. J. D 5, 433–440 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. E. Siegman, M. W. Sasnett, T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

A. Bergamin, G. Cavagnero, L. Cordiali, G. Mana, “Beam astigmatism in laser interferometry,” IEEE Trans. Instrum. Meas. 46, 196–200 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

Metrologia (2)

G. Basile, A. Bergamin, G. Cavagnero, G. Mana, “Phase modulation in high-resolution optical interferometry,” Metrologia 28, 455–461 (1992).
[CrossRef]

B. Boldermann, G. Boensch, H. Knoeckel, A. Nicolaus, E. Tiemann, “Wavelength measurements of three iodine lines between 780 nm and 795 nm,” Metrologia 35, 105–113 (1998).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

R. D. Jones, T. R. Scott, “Error propagation in laser beam spatial parameters,” Opt. Quantum Electron. 26, 25–34 (1994).
[CrossRef]

SIAM (Soc. Ind. Appl. Math) J. Numer. Anal. (1)

C. D. Meyer, G. W. Stewart, “Derivatives and perturbations of eigenvectors,” SIAM (Soc. Ind. Appl. Math) J. Numer. Anal. 25, 679–691 (1988).

Other (8)

R. Mugno, “La macchina di misura a coordinate esperta,” Ph.D. dissertation (Politecnico di Torino, Torino, Italy, 1998).

CCIR camera Model 6710 (Cohu, Inc., P.O. Box 85623, San Diego, California 92186).

A. E. Siegman, “New development in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 77–90.

B. A. Ward, S. Assa, B. W. Davis, C. B. Edwards, P. Muys, “Investigation of the accuracy of M2 measurement of CO2 laser beams,” in Beam Control, Diagnostic, Standard, and Propagation, L. W. Austin, A. Giesen, D. H. Leslie, H. Weichel, eds., Proc. SPIE2375, 335–348 (1995).

“Lasers and laser-related equipment—test methods for laser beam parameters—beam widths, divergence angle and beam propagation factor,” ISO/FDIS 11146:1999(E) (International Organization for Standardization, Geneva, Switzerland, 1999).

M. W. Sasnett, T. F. Johnston, “Beam characterization and measurement of propagation attributes,” in Laser Beam Diagnostic, R. N. Hindy, Y. Kohanzadeh, eds., Proc. SPIE1414, 21–32 (1991).
[CrossRef]

Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, Switzerland, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Error of beam-center calculation versus window size a. Values are scaled to (h x h y )1/2σ z ′Λ x . The ratio β x = σ x ′/σ z ′ expresses pixel coordinate noise versus camera noise.

Fig. 2
Fig. 2

Error of second moment calculation versus normalized window size a. Values are scaled to (h x h y )1/2σ z ′Λ x 2. The ratio β x = σ x ′/σ z ′ expresses pixel coordinate noise versus camera noise.

Fig. 3
Fig. 3

Second moment correlation versus normalized window size a. The ratio β x,y = σ x,y ′/σ z ′ expresses pixel coordinate noise versus camera noise.

Fig. 4
Fig. 4

Background contribution to second moment error versus normalized window size a. Values are scaled to σ b ′Λ x 2.

Fig. 5
Fig. 5

Correction for bias ϕ xx (a) versus normalized window size a (solid curve) and bias contribution to error (dashed curve). The bias contribution to error is scaled to σϕΛ x 2.

Fig. 6
Fig. 6

Results of Monte Carlo simulation. Solid curves show second moment calculation errors versus normalized window size a for different background subtraction: a, 10.05; b, 10.00; c, 9.98. In this simulation Λ xx = 23 and Λ yy = 24 in pixel units. Dashed curves delimit the 68% calculation confidence region.

Fig. 7
Fig. 7

Second moment calculations of a real beam profile image. Solid curves show calculation results versus normalized window size a. Different background subtraction was considered: a, -0.1; b, 0.05; c, 0.2; d, 10% reduction of correction for bias. Dashed curves delimit the 68% calculation confidence region.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

ξ0=i,j=- ξijζiji,j=- ζij
Λx2=i,j=-ξij-ξ02ζiji,j=- ζij,
Λxy=i,j=-ξij-ξ0ηij-η0ζiji,j=- ζij.
xij=ξij+xij,
yij=ηij+yij,
zij=ζij+zij+b,
fu, v=A exp-u2+v2-2ρuv21-ρ2,
ξˆ0=ξ0+ϕxx0-ξ0
ϕxΣjxqjzqj-xpjzpjΔx Σijzij
ξˆ0=ξ0+x0-ξ0Mw/M
Λˆx2=1-ϕxxΛx2,
Λˆxy=1-ϕxyΛxy,
C±=JCJT,
Λ±2αi=ω±αi ω±,
Λˆx2=Λx2+Λw2-Λx2Mw/M,
σw=4a2|a2/3-1+ϕxx|σbΛl22π erf2a/21-ϕxx,
Jξ0, η0; ξij, ηij, ζij=ζij1-ϕxM0Λxuij1-ϕxM0ζij1-ϕyMΛyvij1-ϕyM
Cξ0η0=Σijσx2ζij2+σz2Λx2uij21-ϕx2M2σz2ΛxΛyΣijuijvij1-ϕx1-ϕyM2=Σijσy2ζij2+σz2Λy2vij21-ϕy2M2.
JΛx2, Λy2; ξij, ηij, ζij=2Λxuijζij1-ϕxxM0Λx2uij2-11-ϕxxM02Λyvijζij1-ϕyyMΛy2vij2-11-ϕyyM.
Cxy=Σij4σx2Λx2uij2ζij2+σz2Λx4uij2-121-ϕxx2M2σz2Λx2Λy2Σijuij2-1vij2-11-ϕxx1-ϕyyM2=Σij4σy2Λy2vij2ζij2+σz2Λy4vij2-121-ϕyy2M2.

Metrics