Abstract

Passive Q switching of a tunable alexandrite solid-state laser with a Cr:Y2SiO5 solid-state saturable absorber is numerically studied over a major portion of the alexandrite tuning range. The theory of passive Q switching with a slowly relaxing saturable absorber is studied and utilized for evaluating the performance of the Cr:YSO Q-switched alexandrite laser system. With a typical laser configuration, a Q-switched laser pulse of 262 mJ in 23 ns is obtained.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  2. W. Koechner, Solid-State Laser Engineering, 3rd ed. (Springer-Verlag, Berlin, 1992).
    [CrossRef]
  3. J. A. Morris, C. R. Pollock, “Passive Q switching of a diode-pumped Nd:YAG laser with a saturable absorber,” Opt. Lett. 15, 440–442 (1990).
    [CrossRef] [PubMed]
  4. T. T. Basiev, S. B. Mirov, V. V. Osiko, “Room-temperature color center lasers,” IEEE J. Quantum Electron. 24, 1052–1069 (1988).
    [CrossRef]
  5. D. M. Andrauskas, C. Kennedy, “Tetravalent chromium solid-state passive Q switch for Nd:YAG laser systems,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 393–397.
  6. I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 322–325.
  7. M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
    [CrossRef] [PubMed]
  8. V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
    [CrossRef]
  9. K. Spariosu, R. D. Stultz, M. Birnbaum, “Er:Ca5(PO4)3F saturable-absorber Q switch for the Er:glass laser at 1.53 µm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
    [CrossRef]
  10. R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 µm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
    [CrossRef]
  11. Y. K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-µm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
    [CrossRef]
  12. M. B. Camargo, R. D. Stultz, M. Birnbaum, M. Kokta, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
    [CrossRef] [PubMed]
  13. Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
    [CrossRef]
  14. Y. K. Kuo, M. Birnbaum, “Passive Q-switching of the alexandrite laser with a Cr4+:Y2SiO5 solid-state saturable absorber,” Appl. Phys. Lett. 67, 173–175 (1995).
    [CrossRef]
  15. Y. K. Kuo, M. Birnbaum, “Characteristics of ruby passive Q switching with a Dy2+:CaF2 solid-state saturable absorber,” Appl. Opt. 34, 6829–6833 (1995).
    [CrossRef] [PubMed]
  16. Y. K. Kuo, S. Lee, F. Unlu, M. F. Huang, M. Birnbaum, P. D. Fuqua, B. Dunn, “Solid state polymer dye Q-switch for Cr:LiCAF, alexandrite, and ruby lasers,” Electron. Lett. 32, 2146–2148 (1996).
    [CrossRef]
  17. J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1580 (1985).
    [CrossRef]
  18. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
    [CrossRef]

1996

Y. K. Kuo, S. Lee, F. Unlu, M. F. Huang, M. Birnbaum, P. D. Fuqua, B. Dunn, “Solid state polymer dye Q-switch for Cr:LiCAF, alexandrite, and ruby lasers,” Electron. Lett. 32, 2146–2148 (1996).
[CrossRef]

1995

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

Y. K. Kuo, M. Birnbaum, “Passive Q-switching of the alexandrite laser with a Cr4+:Y2SiO5 solid-state saturable absorber,” Appl. Phys. Lett. 67, 173–175 (1995).
[CrossRef]

M. B. Camargo, R. D. Stultz, M. Birnbaum, M. Kokta, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
[CrossRef] [PubMed]

Y. K. Kuo, M. Birnbaum, “Characteristics of ruby passive Q switching with a Dy2+:CaF2 solid-state saturable absorber,” Appl. Opt. 34, 6829–6833 (1995).
[CrossRef] [PubMed]

1994

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 µm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Y. K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-µm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

1993

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

K. Spariosu, R. D. Stultz, M. Birnbaum, “Er:Ca5(PO4)3F saturable-absorber Q switch for the Er:glass laser at 1.53 µm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

1992

1990

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

J. A. Morris, C. R. Pollock, “Passive Q switching of a diode-pumped Nd:YAG laser with a saturable absorber,” Opt. Lett. 15, 440–442 (1990).
[CrossRef] [PubMed]

1988

T. T. Basiev, S. B. Mirov, V. V. Osiko, “Room-temperature color center lasers,” IEEE J. Quantum Electron. 24, 1052–1069 (1988).
[CrossRef]

1985

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1580 (1985).
[CrossRef]

Alcock, A. J.

I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 322–325.

Andrauskas, D. M.

D. M. Andrauskas, C. Kennedy, “Tetravalent chromium solid-state passive Q switch for Nd:YAG laser systems,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 393–397.

Basiev, T. T.

T. T. Basiev, S. B. Mirov, V. V. Osiko, “Room-temperature color center lasers,” IEEE J. Quantum Electron. 24, 1052–1069 (1988).
[CrossRef]

Bernard, J. E.

I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 322–325.

Birnbaum, M.

Y. K. Kuo, S. Lee, F. Unlu, M. F. Huang, M. Birnbaum, P. D. Fuqua, B. Dunn, “Solid state polymer dye Q-switch for Cr:LiCAF, alexandrite, and ruby lasers,” Electron. Lett. 32, 2146–2148 (1996).
[CrossRef]

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

M. B. Camargo, R. D. Stultz, M. Birnbaum, M. Kokta, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
[CrossRef] [PubMed]

Y. K. Kuo, M. Birnbaum, “Passive Q-switching of the alexandrite laser with a Cr4+:Y2SiO5 solid-state saturable absorber,” Appl. Phys. Lett. 67, 173–175 (1995).
[CrossRef]

Y. K. Kuo, M. Birnbaum, “Characteristics of ruby passive Q switching with a Dy2+:CaF2 solid-state saturable absorber,” Appl. Opt. 34, 6829–6833 (1995).
[CrossRef] [PubMed]

Y. K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-µm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 µm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

K. Spariosu, R. D. Stultz, M. Birnbaum, “Er:Ca5(PO4)3F saturable-absorber Q switch for the Er:glass laser at 1.53 µm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

Camargo, M. B.

M. B. Camargo, R. D. Stultz, M. Birnbaum, M. Kokta, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
[CrossRef] [PubMed]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 µm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Chen, W.

Y. K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-µm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

Demchuk, M. I.

Dunn, B.

Y. K. Kuo, S. Lee, F. Unlu, M. F. Huang, M. Birnbaum, P. D. Fuqua, B. Dunn, “Solid state polymer dye Q-switch for Cr:LiCAF, alexandrite, and ruby lasers,” Electron. Lett. 32, 2146–2148 (1996).
[CrossRef]

Fuqua, P. D.

Y. K. Kuo, S. Lee, F. Unlu, M. F. Huang, M. Birnbaum, P. D. Fuqua, B. Dunn, “Solid state polymer dye Q-switch for Cr:LiCAF, alexandrite, and ruby lasers,” Electron. Lett. 32, 2146–2148 (1996).
[CrossRef]

Gately, B. M.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

Harter, D. J.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1580 (1985).
[CrossRef]

Heller, D. F.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1580 (1985).
[CrossRef]

Huang, M. F.

Y. K. Kuo, S. Lee, F. Unlu, M. F. Huang, M. Birnbaum, P. D. Fuqua, B. Dunn, “Solid state polymer dye Q-switch for Cr:LiCAF, alexandrite, and ruby lasers,” Electron. Lett. 32, 2146–2148 (1996).
[CrossRef]

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

Kennedy, C.

D. M. Andrauskas, C. Kennedy, “Tetravalent chromium solid-state passive Q switch for Nd:YAG laser systems,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 393–397.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 3rd ed. (Springer-Verlag, Berlin, 1992).
[CrossRef]

Kokta, M.

Krasinski, J. S.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

Kuleshov, N. V.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
[CrossRef] [PubMed]

Kuo, Y. K.

Y. K. Kuo, S. Lee, F. Unlu, M. F. Huang, M. Birnbaum, P. D. Fuqua, B. Dunn, “Solid state polymer dye Q-switch for Cr:LiCAF, alexandrite, and ruby lasers,” Electron. Lett. 32, 2146–2148 (1996).
[CrossRef]

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

Y. K. Kuo, M. Birnbaum, “Passive Q-switching of the alexandrite laser with a Cr4+:Y2SiO5 solid-state saturable absorber,” Appl. Phys. Lett. 67, 173–175 (1995).
[CrossRef]

Y. K. Kuo, M. Birnbaum, “Characteristics of ruby passive Q switching with a Dy2+:CaF2 solid-state saturable absorber,” Appl. Opt. 34, 6829–6833 (1995).
[CrossRef] [PubMed]

Y. K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-µm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

Lee, S.

Y. K. Kuo, S. Lee, F. Unlu, M. F. Huang, M. Birnbaum, P. D. Fuqua, B. Dunn, “Solid state polymer dye Q-switch for Cr:LiCAF, alexandrite, and ruby lasers,” Electron. Lett. 32, 2146–2148 (1996).
[CrossRef]

Livshits, M. G.

Mikhailov, V. P.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
[CrossRef] [PubMed]

Miller, I. J.

I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 322–325.

Minkov, B. I.

Mirov, S. B.

T. T. Basiev, S. B. Mirov, V. V. Osiko, “Room-temperature color center lasers,” IEEE J. Quantum Electron. 24, 1052–1069 (1988).
[CrossRef]

Montgomery, S. T.

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 µm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Morris, J. A.

Morris, R. C.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1580 (1985).
[CrossRef]

Myers, J. F.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

Osiko, V. V.

T. T. Basiev, S. B. Mirov, V. V. Osiko, “Room-temperature color center lasers,” IEEE J. Quantum Electron. 24, 1052–1069 (1988).
[CrossRef]

Pete, J. A.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1580 (1985).
[CrossRef]

Pollock, C. R.

Prokohsin, P. V.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

Prokoshin, P. V.

Samelson, H.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1580 (1985).
[CrossRef]

Sandulenko, V. A.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

Scheps, R.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Spariosu, K.

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 µm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

K. Spariosu, R. D. Stultz, M. Birnbaum, “Er:Ca5(PO4)3F saturable-absorber Q switch for the Er:glass laser at 1.53 µm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

Stultz, R. D.

M. B. Camargo, R. D. Stultz, M. Birnbaum, M. Kokta, “Co2+:YSGG saturable absorber Q switch for infrared erbium lasers,” Opt. Lett. 20, 339–341 (1995).
[CrossRef] [PubMed]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 µm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

K. Spariosu, R. D. Stultz, M. Birnbaum, “Er:Ca5(PO4)3F saturable-absorber Q switch for the Er:glass laser at 1.53 µm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

Unlu, F.

Y. K. Kuo, S. Lee, F. Unlu, M. F. Huang, M. Birnbaum, P. D. Fuqua, B. Dunn, “Solid state polymer dye Q-switch for Cr:LiCAF, alexandrite, and ruby lasers,” Electron. Lett. 32, 2146–2148 (1996).
[CrossRef]

Walling, J. C.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1580 (1985).
[CrossRef]

Yumashev, K. V.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
[CrossRef] [PubMed]

Zhavoronkov, N. I.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Y. K. Kuo, M. Birnbaum, “Passive Q-switching of the alexandrite laser with a Cr4+:Y2SiO5 solid-state saturable absorber,” Appl. Phys. Lett. 67, 173–175 (1995).
[CrossRef]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[CrossRef]

K. Spariosu, R. D. Stultz, M. Birnbaum, “Er:Ca5(PO4)3F saturable-absorber Q switch for the Er:glass laser at 1.53 µm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
[CrossRef]

R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, K. Spariosu, “U4+:SrF2 efficient saturable absorber Q switch for the 1.54 µm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
[CrossRef]

Y. K. Kuo, M. Birnbaum, W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-µm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65, 3060–3062 (1994).
[CrossRef]

Electron. Lett.

Y. K. Kuo, S. Lee, F. Unlu, M. F. Huang, M. Birnbaum, P. D. Fuqua, B. Dunn, “Solid state polymer dye Q-switch for Cr:LiCAF, alexandrite, and ruby lasers,” Electron. Lett. 32, 2146–2148 (1996).
[CrossRef]

IEEE J. Quantum Electron.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1580 (1985).
[CrossRef]

T. T. Basiev, S. B. Mirov, V. V. Osiko, “Room-temperature color center lasers,” IEEE J. Quantum Electron. 24, 1052–1069 (1988).
[CrossRef]

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

Opt. Lett.

Opt. Mater.

V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokohsin, K. V. Yumashev, V. A. Sandulenko, “Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet,” Opt. Mater. 2, 267–272 (1993).
[CrossRef]

Other

D. M. Andrauskas, C. Kennedy, “Tetravalent chromium solid-state passive Q switch for Nd:YAG laser systems,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 393–397.

I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 322–325.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

W. Koechner, Solid-State Laser Engineering, 3rd ed. (Springer-Verlag, Berlin, 1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Cr:YSO absorption cross section (following Ref. 13).

Fig. 2
Fig. 2

Alexandrite emission cross section and Cr:YSO absorption cross section (polarization n 3 axis).

Fig. 3
Fig. 3

Pulse width and output energy as functions of wavelength.

Fig. 4
Fig. 4

Output energy and σ a g as functions of wavelength.

Fig. 5
Fig. 5

Peak photon number and σ a g as functions of wavelength.

Fig. 6
Fig. 6

Temporal characteristics of the first two laser pulses as functions of wavelength.

Fig. 7
Fig. 7

Pulse width as a function of R for several values of N a0.

Fig. 8
Fig. 8

Output energy as a function of R for several values of N a0.

Fig. 9
Fig. 9

Occurrence of the first laser pulse as a function of R for several values of N a0.

Fig. 10
Fig. 10

Time interval between Q-switched laser pulses as a function of R for several values of N a0.

Fig. 11
Fig. 11

Pulse width and output energy as functions of pumping rate.

Fig. 12
Fig. 12

Temporal characteristics for the first two laser pulses as functions of pumping rate.

Fig. 13
Fig. 13

N g , Loss, and n as functions of time.

Fig. 14
Fig. 14

N g , Loss, and n near the occurrence of the first giant laser pulse as functions of time.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

dndt=KgNg-KaNa-βKaNa0-Na-γcn,
dNgdt=Rp-γgNg-γKgNgn,
dNadt=γaNa0-Na-KaNan.
NgtNg0 exp-γKgnt/γg0,
NatNa0 exp-Kant/γg0,
1ndndtγg0+Ka2Na0-γKg2Ng0nγg0.
KgNg0-KaNa0-γc>0,
2αaLa2αgLg×σaσg×AgAa>γ,
dNgdt-γKgNgn.
Ng0KaNa0+γcKg.
NthβKaNa0+γcKg.
dndtKgNg-Nthn.
dndNg-Ng-NthγNg.
nintdn-1γNg0Ngt1-NthNgdNg.
n1γNg0-Ng-NthlnNg0Ng.
npeak1γNg0-Nth-NthlnNg0Nth;
npeakNg0γNg0/Nth-1-lnNg0/NthNg0/Nth.
Ng0-Nf-NthlnNg0Nf0.
LossKaNa+βKaNa0-Na+γcKg.

Metrics