Abstract

By proper selection of the radiant reflectance of the reflectors that are interleaved between the half-wave thickness spacers it is possible to design an all-dielectric bandpass for wavelength-division multiplexing. Its passband spectral shape approximates a Chebyshev polynomial.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Baumeister, “Bandpass filters for wavelength division multiplexing—modification of the spectral bandwidth,” Appl. Opt. 37, 6609–6614 (1998).
    [CrossRef]
  2. J. Minowa, Y. Fujii, “High performance bandpass filter for WDM transmission,” Appl. Opt. 23, 193–194 (1984).
  3. P. Baumeister, “Simplified equations for maximally flat alldielectric bandpass design,” Appl. Opt. 22, 1960–1961 (1983).
    [CrossRef]
  4. G. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures (McGraw-Hill, New York, 1964), Chap. 6.
  5. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989), p. 208.
  6. P. Baumeister, Notes for the Course Optical Coating Technology Taught at the UCLA Extension, 14–18 January 1990 (UCLA Extension, University of California at Los Angeles, Los Angeles, Calif., 1990).
  7. Ref. 6, p. 29.
  8. H. A. Macleod, Thin-Film Optical Filters (Macmillan, New York, 1986), p. 164.
  9. Sh. A. Furman, A. V. Tikhonravov, Optics of Multilayer Systems (Editions Frontières, Gif-sur-Yvette Cedex, France, 1992), p. 87.
  10. Ref. 5, p. 41.

1998

1984

1983

Baumeister, P.

P. Baumeister, “Bandpass filters for wavelength division multiplexing—modification of the spectral bandwidth,” Appl. Opt. 37, 6609–6614 (1998).
[CrossRef]

P. Baumeister, “Simplified equations for maximally flat alldielectric bandpass design,” Appl. Opt. 22, 1960–1961 (1983).
[CrossRef]

P. Baumeister, Notes for the Course Optical Coating Technology Taught at the UCLA Extension, 14–18 January 1990 (UCLA Extension, University of California at Los Angeles, Los Angeles, Calif., 1990).

Fujii, Y.

Furman, Sh. A.

Sh. A. Furman, A. V. Tikhonravov, Optics of Multilayer Systems (Editions Frontières, Gif-sur-Yvette Cedex, France, 1992), p. 87.

Jones, E. M. T.

G. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures (McGraw-Hill, New York, 1964), Chap. 6.

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Macmillan, New York, 1986), p. 164.

Matthaei, G.

G. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures (McGraw-Hill, New York, 1964), Chap. 6.

Minowa, J.

Thelen, A.

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989), p. 208.

Tikhonravov, A. V.

Sh. A. Furman, A. V. Tikhonravov, Optics of Multilayer Systems (Editions Frontières, Gif-sur-Yvette Cedex, France, 1992), p. 87.

Young, L.

G. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures (McGraw-Hill, New York, 1964), Chap. 6.

Appl. Opt.

Other

G. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures (McGraw-Hill, New York, 1964), Chap. 6.

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989), p. 208.

P. Baumeister, Notes for the Course Optical Coating Technology Taught at the UCLA Extension, 14–18 January 1990 (UCLA Extension, University of California at Los Angeles, Los Angeles, Calif., 1990).

Ref. 6, p. 29.

H. A. Macleod, Thin-Film Optical Filters (Macmillan, New York, 1986), p. 164.

Sh. A. Furman, A. V. Tikhonravov, Optics of Multilayer Systems (Editions Frontières, Gif-sur-Yvette Cedex, France, 1992), p. 87.

Ref. 5, p. 41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Isolation of reflector R2 of a five-cavity bandpass. Its radiant reflectance is computed by means of considering one of the contiguous spacers as an emergent medium and the other contiguous spacer as an incident medium.

Fig. 2
Fig. 2

Versus normalized frequency, spectral transmittance of a prototype five-cavity bandpass air A B C B A air where the refractive indices of A, B, and C are 4.73, 0.22906, and 7.430, respectively (shaded). The optical thickness of each layer is λ0/2. (Solid) Chebyshev polynomial of the first kind and order 5. The ordinate of the Chebyshev is squared.

Fig. 3
Fig. 3

Versus normalized frequency, transmittance of a bandpass of the design7 cement Z C Z 3C Z Z 3C (Z C)3 Z 3C Z Z 3C (Z C)3 Z 3C Z Z 3C Z C Z glass (dashed curve). The design of a bandpass, as constructed from Table 10.1 of Thelen,6 is (solid curve) air H H L 3H L H (H L)3 H (H L)3 H H L 3H L H H air. The refractive indices of C, L, Z, H, cement, and glass are 1.35, 1.45, 2.30, 4.30, 1.52 and 1.52, respectively. C, L, Z, and H represent layers of optical thickness λ0/4.

Fig. 4
Fig. 4

Spectral transmittance of a four-cavity quasi-Chebyshev bandpass of the design (shaded) air 0.237L 0.508H 0.237L L (H L)7 4H (L H)18 4L (H L)19 4H (L H)18 4L (H L)8 0.19L 0.604H 0.19L glass and (solid) air H (L H)7 4L (H L)17 H 4L (H L)18 H 4L (H L)17 H 4L (H L)8 0.3L 0.38H 2.3L glass, where H and L represent layers of optical thickness λ0/4 at λ0 of 1552.5 nm. The refractive indices of glass, L, and H are 1.50, 1.47, and 2.065, respectively. The scale of the ordinate changes from linear to log at 0.90.

Fig. 5
Fig. 5

Spectral transmittance of a five-cavity bandpass with excessive ripple in the passband transmittance (solid) air 0.363L 0.260H 0.363L (L H)8 2L (H L)17 H 2L (H L)18 H 2L (H L)18 H 2L (H L)17 H 2L (H L)8 H glass. The design for the shaded curve incorporates phase dispersion narrowing of the passband air 0.363L 0.260H 0.363L (L H)8 2L (H L)16 H L 3H 4L (H L)18 H 2L (H L)18 H 4L 3H L (H L)16 H 2L (H L)8 H glass, where H and L represent layers of optical thickness λ0/4 at λ0 of 1552.5 nm. The refractive indices of glass, L, and H are 1.50, 1.47, and 2.065, respectively. The scale of the ordinate changes from linear to log at 0.90.

Tables (3)

Tables Icon

Table 1 SWR’s of a Three-Cavity Bandpass with Chebyshev Responsea

Tables Icon

Table 2 SWR’s of a Four-Cavity Bandpass with Chebyshev Responsea

Tables Icon

Table 3 SWR’s of a Five-Cavity Bandpass with Chebyshev Responsea

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

V=1+R1-R,
Vmaxi=0q Vi.
ηlogVmax.
V2=Vmax/V0V1,
V2=VmaxV0V1-2,
V1=Vmax/V0
zlogripple_in_percent.
Vi=10a+bη+cη2.
aa0+a1z+a2z2+a3z3.
V=nHnLq+1.
low index H L8 E glass,
air F L H L7 high index.
V0=2.065151.47-161.8792=393.1,
V=nH18nL-17ns-1=2.065181.47-171.50-1=445,

Metrics