Abstract

The purpose of this research is to deliver free-electron-laser (FEL) pulses for intraocular microsurgery. The FEL at Vanderbilt University is tunable from 1.8 to 10.8 µm. To deliver the FEL beam we used a metallic-coated hollow-glass waveguide of 530-µm inner diameter. A 20-gauge cannula with a miniature CaF2 window shielded the waveguide from water. Open-sky retinotomy was performed on cadaver eyes. The system delivered as much as 6 × 105 W of FEL peak power to the intraocular tissues without damage to the waveguide or to the surgical probe.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Brau, “The Vanderbilt University free-electron laser center,” Nucl. Instrum. Meth. A 319, 47–50 (1992).
    [CrossRef]
  2. G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
    [CrossRef] [PubMed]
  3. K. M. Joos, J. H. Shen, G. S. Edwards, D. J. Shetlar, R. D. Robinson, D. O’Day, “Infrared free electron laser-tissue interactions with human ocular tissues,” Invest. Ophthalmol. Vis. Sci. Suppl. 37, S431 (1996).
  4. G. N. Merberg, “Current status of infrared fiber optics for medical laser power delivery,” Lasers Surg. Med. 13, 572–576 (1993).
    [CrossRef] [PubMed]
  5. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [CrossRef] [PubMed]
  6. J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Opto-electronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
    [CrossRef]
  7. Y. Matsuura, T. Abel, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
    [CrossRef]
  8. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell. Syst. Tech. J. 43, 1783–1809 (1964).
    [CrossRef]
  9. M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).
    [CrossRef] [PubMed]
  10. K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
    [CrossRef]
  11. W. Sun, J. H. Shen, D. J. Shetlar, K. M. Joos, “Endoscopic goniotomy with the free electron laser in congenital glaucoma rabbits,” J. Glaucoma (to be published).
  12. K. Joos, J. Shen, D. Shetlar, V. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. (to be published).

1996 (2)

K. M. Joos, J. H. Shen, G. S. Edwards, D. J. Shetlar, R. D. Robinson, D. O’Day, “Infrared free electron laser-tissue interactions with human ocular tissues,” Invest. Ophthalmol. Vis. Sci. Suppl. 37, S431 (1996).

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

1995 (1)

1994 (2)

Y. Matsuura, T. Abel, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

1993 (1)

G. N. Merberg, “Current status of infrared fiber optics for medical laser power delivery,” Lasers Surg. Med. 13, 572–576 (1993).
[CrossRef] [PubMed]

1992 (1)

C. A. Brau, “The Vanderbilt University free-electron laser center,” Nucl. Instrum. Meth. A 319, 47–50 (1992).
[CrossRef]

1990 (1)

1964 (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell. Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Abel, T.

Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

Y. Matsuura, T. Abel, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

Brau, C. A.

C. A. Brau, “The Vanderbilt University free-electron laser center,” Nucl. Instrum. Meth. A 319, 47–50 (1992).
[CrossRef]

Casagrande, V.

K. Joos, J. Shen, D. Shetlar, V. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. (to be published).

Copeland, M.

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Davidson, J.

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Edwards, G. S.

K. M. Joos, J. H. Shen, G. S. Edwards, D. J. Shetlar, R. D. Robinson, D. O’Day, “Infrared free electron laser-tissue interactions with human ocular tissues,” Invest. Ophthalmol. Vis. Sci. Suppl. 37, S431 (1996).

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Harrington, J. A.

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

Y. Matsuura, T. Abel, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Opto-electronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
[CrossRef]

Johnson, B.

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Joos, K.

K. Joos, J. Shen, D. Shetlar, V. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. (to be published).

Joos, K. M.

K. M. Joos, J. H. Shen, G. S. Edwards, D. J. Shetlar, R. D. Robinson, D. O’Day, “Infrared free electron laser-tissue interactions with human ocular tissues,” Invest. Ophthalmol. Vis. Sci. Suppl. 37, S431 (1996).

W. Sun, J. H. Shen, D. J. Shetlar, K. M. Joos, “Endoscopic goniotomy with the free electron laser in congenital glaucoma rabbits,” J. Glaucoma (to be published).

Karasawa, S.

Logan, R.

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Maciunas, R.

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell. Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Matsuura, K.

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Matsuura, Y.

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

Y. Matsuura, T. Abel, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Opto-electronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
[CrossRef]

Mendenhall, M.

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Merberg, G. N.

G. N. Merberg, “Current status of infrared fiber optics for medical laser power delivery,” Lasers Surg. Med. 13, 572–576 (1993).
[CrossRef] [PubMed]

Miyagi, M.

O’Day, D.

K. M. Joos, J. H. Shen, G. S. Edwards, D. J. Shetlar, R. D. Robinson, D. O’Day, “Infrared free electron laser-tissue interactions with human ocular tissues,” Invest. Ophthalmol. Vis. Sci. Suppl. 37, S431 (1996).

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Ossoff, R.

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Reinisch, L.

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Robinson, R. D.

K. M. Joos, J. H. Shen, G. S. Edwards, D. J. Shetlar, R. D. Robinson, D. O’Day, “Infrared free electron laser-tissue interactions with human ocular tissues,” Invest. Ophthalmol. Vis. Sci. Suppl. 37, S431 (1996).

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell. Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Shen, J.

K. Joos, J. Shen, D. Shetlar, V. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. (to be published).

Shen, J. H.

K. M. Joos, J. H. Shen, G. S. Edwards, D. J. Shetlar, R. D. Robinson, D. O’Day, “Infrared free electron laser-tissue interactions with human ocular tissues,” Invest. Ophthalmol. Vis. Sci. Suppl. 37, S431 (1996).

W. Sun, J. H. Shen, D. J. Shetlar, K. M. Joos, “Endoscopic goniotomy with the free electron laser in congenital glaucoma rabbits,” J. Glaucoma (to be published).

Shetlar, D.

K. Joos, J. Shen, D. Shetlar, V. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. (to be published).

Shetlar, D. J.

K. M. Joos, J. H. Shen, G. S. Edwards, D. J. Shetlar, R. D. Robinson, D. O’Day, “Infrared free electron laser-tissue interactions with human ocular tissues,” Invest. Ophthalmol. Vis. Sci. Suppl. 37, S431 (1996).

W. Sun, J. H. Shen, D. J. Shetlar, K. M. Joos, “Endoscopic goniotomy with the free electron laser in congenital glaucoma rabbits,” J. Glaucoma (to be published).

Sun, W.

W. Sun, J. H. Shen, D. J. Shetlar, K. M. Joos, “Endoscopic goniotomy with the free electron laser in congenital glaucoma rabbits,” J. Glaucoma (to be published).

Tribble, J.

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Werkhaven, J.

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Appl. Opt. (2)

Bell. Syst. Tech. J. (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell. Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Electron. Lett. (1)

Y. Matsuura, T. Abel, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. Suppl. (1)

K. M. Joos, J. H. Shen, G. S. Edwards, D. J. Shetlar, R. D. Robinson, D. O’Day, “Infrared free electron laser-tissue interactions with human ocular tissues,” Invest. Ophthalmol. Vis. Sci. Suppl. 37, S431 (1996).

Lasers Surg. Med. (1)

G. N. Merberg, “Current status of infrared fiber optics for medical laser power delivery,” Lasers Surg. Med. 13, 572–576 (1993).
[CrossRef] [PubMed]

Nature (1)

G. S. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, “Tissue ablation by a free-electron laser tuned to the Amide II band,” Nature 371, 416–419 (1994).
[CrossRef] [PubMed]

Nucl. Instrum. Meth. A (1)

C. A. Brau, “The Vanderbilt University free-electron laser center,” Nucl. Instrum. Meth. A 319, 47–50 (1992).
[CrossRef]

Opt. Eng. (1)

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Other (3)

W. Sun, J. H. Shen, D. J. Shetlar, K. M. Joos, “Endoscopic goniotomy with the free electron laser in congenital glaucoma rabbits,” J. Glaucoma (to be published).

K. Joos, J. Shen, D. Shetlar, V. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. (to be published).

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Opto-electronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of a typical HGW, showing Ag and AgI films deposited inside silica tubing.

Fig. 2
Fig. 2

Spectral loss for HGW’s designed for long-wavelength operation.

Fig. 3
Fig. 3

Schematic of the FEL HGW delivery system. The FEL beam passes through an adjustable diaphragm to attenuate the beam, through a 150-mm focal-length lens, and through a 500-µm-diameter pinhole to couple the beam to the hollow waveguide. The waveguide is within a surgical probe and is protected with a CaF2 window–lens at the tip. Nitrogen gas was flowed into the Teflon tube to the probe tip and circulated through the hollow waveguide.

Fig. 4
Fig. 4

Open-sky retinal cutting procedure with HGW-delivered FEL surgical probe. The arrows show the ablated line on the retina.

Fig. 5
Fig. 5

Histologic results showing the ablated incision in the retina. No collateral damage was found.

Fig. 6
Fig. 6

Surgeons using a HGW-delivered FEL surgical probe to conduct an animal experiment.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α  λ2a3,  α  1R,

Metrics