Abstract

A theoretical and experimental study of photothermal behavior in a commercially available optical path adhesive is described. Photothermal effects were examined for cw and pulsed laser radiation (∼1 µs) at 1550 nm. A fiber-optic backreflection technique was used to measure the thermo-optic glass transition temperature of the adhesive. This transition temperature was then used to calibrate fiber-optic photothermal blooming and backreflection pump–probe experiments. Simple thermal models predict ΔT at 300 mW (cw) to be 65 °C and 53 °C at 100 W (pulsed). Experimental results are in reasonable agreement with theoretical predictions. The characteristic photothermal relaxation time after a 1-µs pulse for optical path adhesives is found to be 166 µs at the end of a fiber where the mode field diameter is 10.5 µm. Photothermally induced temperatures were found to be below the thermal degradation temperature of the adhesive even at powers as high as 1 W (cw) or 100 W (pulse).

© 2001 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
    [CrossRef]
  2. Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
    [CrossRef]
  3. S. Kobayashi, F. Kiger, M. Myers, A. Spector, “Long term reliability testing of silica glass optical waveguide splitters,” in Proceedings of National Fiber Optic Engineers Conference, June 18–22, 1995, Boston, Mass. (Bellcore, Piscataway, N.J., 1995), pp. 833–837.
  4. M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).
  5. T. Strite, P. van der Stokker, “Telecommunications: needs drive laser improvements,” Photonics Spectra106–107 (1999).
  6. J. Kulakofsky, “Are the components you use strong enough for the high power systems you need?,” Lightwave 17, 147–152 (2000).
  7. R. A. Norwood, “Return loss measurements for the determination of critical materials parameters for polymer optical waveguides,” in Organic Thin Films for Photonic Applications, Vol. 14 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 161–163.
  8. N. J. Dovichi, “Thermo-optical spectrophotometries in analytical chemistry,” Crit. Rev. Anal. Chem. 17, 357–423 (1987).
    [CrossRef]
  9. S. E. Braslavsky, K. Heihoff, “Photothermal methods,” in CRC Handbook of Organic Photochemistry, J. C. Scaiano (CRC Press, Boca Raton, Fla., 1989), Vol. 1, pp. 327–355.
  10. H. Einsiedel, S. Mittler-Neher, “Photothermal beam deflection techniques: useful tools for integrated optics,” Opt. Appl. 26, 347–357 (1996).
  11. M. J. McFarland, K. W. Beeson, “Polymer microstructures which facilitate fiber optic to waveguide coupling,” U.S. patent5,359,687 (25October1994).
  12. Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
    [CrossRef]
  13. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, London, 1959).
  14. R. Wood, Laser Damage in Optical Materials (Institute of Physics, Bristol, UK, 1986).
  15. A. A. Manenkov, V. S. Nechitailo, “Role of absorbing defects in laser damage to transparent polymers,” Sov. J. Quantum Electron. 10, 347–349 (1980).
    [CrossRef]
  16. K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
    [CrossRef]
  17. A. V. Butenin, B. Ya. Kogan, “Nucleation and evolution of a thermochemical instability at an absorbing inclusion in polymethylmethacrylate caused by a cw laser beam,” Sov. Phys. Tech. Phys. 24, 506–507 (1979).
  18. R. M. O’Connell, T. T. Saito, “Plastics for high power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).
  19. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford U. Press, Oxford, UK, 1975).
  20. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis, Vol. 134 of Chemical Analysis (Wiley, New York, 1996).

2000 (1)

J. Kulakofsky, “Are the components you use strong enough for the high power systems you need?,” Lightwave 17, 147–152 (2000).

1999 (1)

T. Strite, P. van der Stokker, “Telecommunications: needs drive laser improvements,” Photonics Spectra106–107 (1999).

1998 (1)

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

1996 (1)

H. Einsiedel, S. Mittler-Neher, “Photothermal beam deflection techniques: useful tools for integrated optics,” Opt. Appl. 26, 347–357 (1996).

1995 (1)

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

1992 (2)

Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
[CrossRef]

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
[CrossRef]

1987 (1)

N. J. Dovichi, “Thermo-optical spectrophotometries in analytical chemistry,” Crit. Rev. Anal. Chem. 17, 357–423 (1987).
[CrossRef]

1983 (2)

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

R. M. O’Connell, T. T. Saito, “Plastics for high power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

1980 (1)

A. A. Manenkov, V. S. Nechitailo, “Role of absorbing defects in laser damage to transparent polymers,” Sov. J. Quantum Electron. 10, 347–349 (1980).
[CrossRef]

1979 (1)

A. V. Butenin, B. Ya. Kogan, “Nucleation and evolution of a thermochemical instability at an absorbing inclusion in polymethylmethacrylate caused by a cw laser beam,” Sov. Phys. Tech. Phys. 24, 506–507 (1979).

Beeson, K. W.

M. J. McFarland, K. W. Beeson, “Polymer microstructures which facilitate fiber optic to waveguide coupling,” U.S. patent5,359,687 (25October1994).

Bialkowski, S. E.

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis, Vol. 134 of Chemical Analysis (Wiley, New York, 1996).

Braslavsky, S. E.

S. E. Braslavsky, K. Heihoff, “Photothermal methods,” in CRC Handbook of Organic Photochemistry, J. C. Scaiano (CRC Press, Boca Raton, Fla., 1989), Vol. 1, pp. 327–355.

Butenin, A. V.

A. V. Butenin, B. Ya. Kogan, “Nucleation and evolution of a thermochemical instability at an absorbing inclusion in polymethylmethacrylate caused by a cw laser beam,” Sov. Phys. Tech. Phys. 24, 506–507 (1979).

Carslaw, H. S.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, London, 1959).

Crank, J.

J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford U. Press, Oxford, UK, 1975).

De Dobbelaere, P.

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

Diemeer, M.

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

Donckers, M. C. J. M.

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

Dovichi, N. J.

N. J. Dovichi, “Thermo-optical spectrophotometries in analytical chemistry,” Crit. Rev. Anal. Chem. 17, 357–423 (1987).
[CrossRef]

Dyumaev, K. M.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

Einsiedel, H.

H. Einsiedel, S. Mittler-Neher, “Photothermal beam deflection techniques: useful tools for integrated optics,” Opt. Appl. 26, 347–357 (1996).

Flipse, M.

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

Hanawa, F.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
[CrossRef]

Heihoff, K.

S. E. Braslavsky, K. Heihoff, “Photothermal methods,” in CRC Handbook of Organic Photochemistry, J. C. Scaiano (CRC Press, Boca Raton, Fla., 1989), Vol. 1, pp. 327–355.

Hibino, Y.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Ishii, M.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Jaeger, J. C.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, London, 1959).

Kiger, F.

S. Kobayashi, F. Kiger, M. Myers, A. Spector, “Long term reliability testing of silica glass optical waveguide splitters,” in Proceedings of National Fiber Optic Engineers Conference, June 18–22, 1995, Boston, Mass. (Bellcore, Piscataway, N.J., 1995), pp. 833–837.

Kitoh, T.

Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
[CrossRef]

Kobayashi, S.

S. Kobayashi, F. Kiger, M. Myers, A. Spector, “Long term reliability testing of silica glass optical waveguide splitters,” in Proceedings of National Fiber Optic Engineers Conference, June 18–22, 1995, Boston, Mass. (Bellcore, Piscataway, N.J., 1995), pp. 833–837.

Kogan, B. Ya.

A. V. Butenin, B. Ya. Kogan, “Nucleation and evolution of a thermochemical instability at an absorbing inclusion in polymethylmethacrylate caused by a cw laser beam,” Sov. Phys. Tech. Phys. 24, 506–507 (1979).

Kulakofsky, J.

J. Kulakofsky, “Are the components you use strong enough for the high power systems you need?,” Lightwave 17, 147–152 (2000).

Manenkov, A. A.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

A. A. Manenkov, V. S. Nechitailo, “Role of absorbing defects in laser damage to transparent polymers,” Sov. J. Quantum Electron. 10, 347–349 (1980).
[CrossRef]

Maruno, T.

Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
[CrossRef]

Maslyukov, A. P.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

Matyushin, G. A.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

McFarland, M. J.

M. J. McFarland, K. W. Beeson, “Polymer microstructures which facilitate fiber optic to waveguide coupling,” U.S. patent5,359,687 (25October1994).

Mittler-Neher, S.

H. Einsiedel, S. Mittler-Neher, “Photothermal beam deflection techniques: useful tools for integrated optics,” Opt. Appl. 26, 347–357 (1996).

Myers, M.

S. Kobayashi, F. Kiger, M. Myers, A. Spector, “Long term reliability testing of silica glass optical waveguide splitters,” in Proceedings of National Fiber Optic Engineers Conference, June 18–22, 1995, Boston, Mass. (Bellcore, Piscataway, N.J., 1995), pp. 833–837.

Nakagome, H.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Nechitailo, V. S.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

A. A. Manenkov, V. S. Nechitailo, “Role of absorbing defects in laser damage to transparent polymers,” Sov. J. Quantum Electron. 10, 347–349 (1980).
[CrossRef]

Norwood, R. A.

R. A. Norwood, “Return loss measurements for the determination of critical materials parameters for polymer optical waveguides,” in Organic Thin Films for Photonic Applications, Vol. 14 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 161–163.

O’Connell, R. M.

R. M. O’Connell, T. T. Saito, “Plastics for high power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

Ohara, S.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
[CrossRef]

Prokhorov, A. M.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

Saito, T. T.

R. M. O’Connell, T. T. Saito, “Plastics for high power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

Scaiano, J. C.

S. E. Braslavsky, K. Heihoff, “Photothermal methods,” in CRC Handbook of Organic Photochemistry, J. C. Scaiano (CRC Press, Boca Raton, Fla., 1989), Vol. 1, pp. 327–355.

Spector, A.

S. Kobayashi, F. Kiger, M. Myers, A. Spector, “Long term reliability testing of silica glass optical waveguide splitters,” in Proceedings of National Fiber Optic Engineers Conference, June 18–22, 1995, Boston, Mass. (Bellcore, Piscataway, N.J., 1995), pp. 833–837.

Strite, T.

T. Strite, P. van der Stokker, “Telecommunications: needs drive laser improvements,” Photonics Spectra106–107 (1999).

Takato, N.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Taketani, N.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
[CrossRef]

Takezawa, Y.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
[CrossRef]

Tanno, S.

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
[CrossRef]

Tumolillo, T.

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

van der Stokker, P.

T. Strite, P. van der Stokker, “Telecommunications: needs drive laser improvements,” Photonics Spectra106–107 (1999).

Wood, R.

R. Wood, Laser Damage in Optical Materials (Institute of Physics, Bristol, UK, 1986).

Yamamada, Y.

Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
[CrossRef]

Crit. Rev. Anal. Chem. (1)

N. J. Dovichi, “Thermo-optical spectrophotometries in analytical chemistry,” Crit. Rev. Anal. Chem. 17, 357–423 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Yamamada, F. Hanawa, T. Kitoh, T. Maruno, “Low-loss and stable fiber-to-waveguide connection utilizing UV curable adhesive,” IEEE Photon. Technol. Lett. 4, 906–908 (1992).
[CrossRef]

J. Lightwave Technol. (1)

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

J. Polym. Sci. (1)

Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fiber,” J. Polym. Sci. 30, 879–885 (1992).
[CrossRef]

Jpn J. Appl. Phys. (1)

M. C. J. M. Donckers, T. Tumolillo, P. De Dobbelaere, M. Flipse, M. Diemeer, “Reliability and environmental stability of polymer based solid state optical switches,” Jpn J. Appl. Phys. 37, 53–55 (1998).

Lightwave (1)

J. Kulakofsky, “Are the components you use strong enough for the high power systems you need?,” Lightwave 17, 147–152 (2000).

Opt. Appl. (1)

H. Einsiedel, S. Mittler-Neher, “Photothermal beam deflection techniques: useful tools for integrated optics,” Opt. Appl. 26, 347–357 (1996).

Opt. Eng. (1)

R. M. O’Connell, T. T. Saito, “Plastics for high power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).

Photonics Spectra (1)

T. Strite, P. van der Stokker, “Telecommunications: needs drive laser improvements,” Photonics Spectra106–107 (1999).

Sov. J. Quantum Electron. (2)

A. A. Manenkov, V. S. Nechitailo, “Role of absorbing defects in laser damage to transparent polymers,” Sov. J. Quantum Electron. 10, 347–349 (1980).
[CrossRef]

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Transparent polymers: a new class of optical materials for lasers,” Sov. J. Quantum Electron. 13, 503–507 (1983).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

A. V. Butenin, B. Ya. Kogan, “Nucleation and evolution of a thermochemical instability at an absorbing inclusion in polymethylmethacrylate caused by a cw laser beam,” Sov. Phys. Tech. Phys. 24, 506–507 (1979).

Other (8)

J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford U. Press, Oxford, UK, 1975).

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis, Vol. 134 of Chemical Analysis (Wiley, New York, 1996).

M. J. McFarland, K. W. Beeson, “Polymer microstructures which facilitate fiber optic to waveguide coupling,” U.S. patent5,359,687 (25October1994).

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, London, 1959).

R. Wood, Laser Damage in Optical Materials (Institute of Physics, Bristol, UK, 1986).

S. Kobayashi, F. Kiger, M. Myers, A. Spector, “Long term reliability testing of silica glass optical waveguide splitters,” in Proceedings of National Fiber Optic Engineers Conference, June 18–22, 1995, Boston, Mass. (Bellcore, Piscataway, N.J., 1995), pp. 833–837.

R. A. Norwood, “Return loss measurements for the determination of critical materials parameters for polymer optical waveguides,” in Organic Thin Films for Photonic Applications, Vol. 14 of OSA 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 161–163.

S. E. Braslavsky, K. Heihoff, “Photothermal methods,” in CRC Handbook of Organic Photochemistry, J. C. Scaiano (CRC Press, Boca Raton, Fla., 1989), Vol. 1, pp. 327–355.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics