Abstract

Three-dimensional imaging of three small absorbers embedded in a tissuelike cylindrical solid phantom was conducted by diffusion optical tomography. Each absorber, which was 10 mm in diameter and 10 mm high, was located on the same plane in a phantom, which was 80 mm in diameter and 140 mm high. The optical properties of the phantom were similar to those of the human breast; that is, one absorber had lower absorption and the other two absorbers had higher absorption than that of the phantom. Reemission from the phantom was measured with a multichannel photon counting system. Image reconstruction was performed by our average value method. We were able to distinguish lower and higher absorbers quantitatively. This result shows that our method can diagnose not only the existence of but also a morbid state of breast cancer.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. E. W. Schmit, J. C. Hebden, E. M. C. Haillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
    [CrossRef]
  2. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
    [CrossRef]
  3. V. Ntziachristors, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
    [CrossRef]
  4. Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
    [CrossRef]
  5. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 565–570 (1999).
    [CrossRef]
  6. Y. Painchaud, A. Mailloux, É. Harvey, S. Verreault, J. Fréchette, C. Gilbert, M. Vernon, P. Beaudry, “Multi-port time-domain laser mammography: results on solid phantom and volunteers,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 548–555 (1999).
    [CrossRef]
  7. J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
    [PubMed]
  8. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef] [PubMed]
  9. J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
    [CrossRef] [PubMed]
  10. R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 87–120.
  11. S. R. Arridge, “Forward and inverse problems in time resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 35–64.
  12. H. Eda, I. Oda, Y. Ito, Y. Wada, “Image reconstruction in optical CT using TEAM,” in Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 477–483 (1995).
  13. J. Chang, R. Aronson, H. L. Graber, R. L. Barbour, “Imaging diffusive media using time-independent and time-harmonic sources: dependence of image quality on imaging algorithms, target volume, weight matrix, and view angles,” in Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 448–464 (1995).
  14. M. Firbank, M. Oda, Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
    [CrossRef]
  15. M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).
  16. Y. Yamashita, M. Kaneko, “Visible and infrared diaphanoscopy for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 283–316.
  17. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
    [CrossRef]

2000 (1)

1999 (2)

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

1998 (2)

V. Ntziachristors, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

1995 (1)

M. Firbank, M. Oda, Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef]

1993 (2)

1990 (1)

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
[CrossRef] [PubMed]

Alfano, R. R.

Aronson, R.

R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 87–120.

J. Chang, R. Aronson, H. L. Graber, R. L. Barbour, “Imaging diffusive media using time-independent and time-harmonic sources: dependence of image quality on imaging algorithms, target volume, weight matrix, and view angles,” in Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 448–464 (1995).

Arridge, S. R.

F. E. W. Schmit, J. C. Hebden, E. M. C. Haillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

S. R. Arridge, “Forward and inverse problems in time resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 35–64.

Barbour, R. L.

J. Chang, R. Aronson, H. L. Graber, R. L. Barbour, “Imaging diffusive media using time-independent and time-harmonic sources: dependence of image quality on imaging algorithms, target volume, weight matrix, and view angles,” in Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 448–464 (1995).

R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 87–120.

Beaudry, P.

Y. Painchaud, A. Mailloux, É. Harvey, S. Verreault, J. Fréchette, C. Gilbert, M. Vernon, P. Beaudry, “Multi-port time-domain laser mammography: results on solid phantom and volunteers,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 548–555 (1999).
[CrossRef]

Chance, B.

V. Ntziachristors, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 565–570 (1999).
[CrossRef]

Chang, J.

J. Chang, R. Aronson, H. L. Graber, R. L. Barbour, “Imaging diffusive media using time-independent and time-harmonic sources: dependence of image quality on imaging algorithms, target volume, weight matrix, and view angles,” in Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 448–464 (1995).

Chang, J. H.

R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 87–120.

Das, B. B.

Dehghani, H.

Delpy,

M. Firbank, M. Oda, Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef]

Delpy, D. T.

Eda, H.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, “Image reconstruction in optical CT using TEAM,” in Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 477–483 (1995).

Firbank, M.

M. Firbank, M. Oda, Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef]

Fréchette, J.

Y. Painchaud, A. Mailloux, É. Harvey, S. Verreault, J. Fréchette, C. Gilbert, M. Vernon, P. Beaudry, “Multi-port time-domain laser mammography: results on solid phantom and volunteers,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 548–555 (1999).
[CrossRef]

Fry, M. E.

Gilbert, C.

Y. Painchaud, A. Mailloux, É. Harvey, S. Verreault, J. Fréchette, C. Gilbert, M. Vernon, P. Beaudry, “Multi-port time-domain laser mammography: results on solid phantom and volunteers,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 548–555 (1999).
[CrossRef]

Graber, H. L.

R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 87–120.

J. Chang, R. Aronson, H. L. Graber, R. L. Barbour, “Imaging diffusive media using time-independent and time-harmonic sources: dependence of image quality on imaging algorithms, target volume, weight matrix, and view angles,” in Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 448–464 (1995).

Grünbaum, F. A.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
[CrossRef] [PubMed]

Haillman, E. M. C.

Harvey, É.

Y. Painchaud, A. Mailloux, É. Harvey, S. Verreault, J. Fréchette, C. Gilbert, M. Vernon, P. Beaudry, “Multi-port time-domain laser mammography: results on solid phantom and volunteers,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 548–555 (1999).
[CrossRef]

Hebden, J. C.

Ito, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, “Image reconstruction in optical CT using TEAM,” in Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 477–483 (1995).

Kan, H.

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Kaneko, M.

Y. Yamashita, M. Kaneko, “Visible and infrared diaphanoscopy for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 283–316.

Kohn, P.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
[CrossRef] [PubMed]

Ma, X.

V. Ntziachristors, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Mailloux, A.

Y. Painchaud, A. Mailloux, É. Harvey, S. Verreault, J. Fréchette, C. Gilbert, M. Vernon, P. Beaudry, “Multi-port time-domain laser mammography: results on solid phantom and volunteers,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 548–555 (1999).
[CrossRef]

McBride, T. O.

Miwa, M.

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

Miyajima, H.

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Muramatsu, S.

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Nakkano, A.

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Ntziachristors, V.

V. Ntziachristors, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Ntziachristos, V.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 565–570 (1999).
[CrossRef]

Oda, I.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, “Image reconstruction in optical CT using TEAM,” in Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 477–483 (1995).

Oda, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

M. Firbank, M. Oda, Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef]

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Ohta, K.

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Oikawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Osterberg, U. L.

Painchaud, Y.

Y. Painchaud, A. Mailloux, É. Harvey, S. Verreault, J. Fréchette, C. Gilbert, M. Vernon, P. Beaudry, “Multi-port time-domain laser mammography: results on solid phantom and volunteers,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 548–555 (1999).
[CrossRef]

Paulsen, K. D.

Pogue, B. W.

Prewitt, J.

Sassaroli, A.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Schmit, F. E. W.

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 565–570 (1999).
[CrossRef]

Schweiger, M.

Shimizu, K.

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Singer, J. R.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
[CrossRef] [PubMed]

Sugiura, N.

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Suzuki, A.

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Suzuki, S.

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Tamura, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tsuchiya, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Tsunazawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Ueda, Y.

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

Vernon, M.

Y. Painchaud, A. Mailloux, É. Harvey, S. Verreault, J. Fréchette, C. Gilbert, M. Vernon, P. Beaudry, “Multi-port time-domain laser mammography: results on solid phantom and volunteers,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 548–555 (1999).
[CrossRef]

Verreault, S.

Y. Painchaud, A. Mailloux, É. Harvey, S. Verreault, J. Fréchette, C. Gilbert, M. Vernon, P. Beaudry, “Multi-port time-domain laser mammography: results on solid phantom and volunteers,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 548–555 (1999).
[CrossRef]

Wada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, “Image reconstruction in optical CT using TEAM,” in Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 477–483 (1995).

Wang, Y.

R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 87–120.

Yamada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Yamashita, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

Y. Yamashita, M. Kaneko, “Visible and infrared diaphanoscopy for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 283–316.

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Yodh, A. G.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 565–570 (1999).
[CrossRef]

Yoo, K. M.

Zubelli, J. P.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
[CrossRef] [PubMed]

Appl. Opt. (3)

Jpn. J. Appl. Phys. (1)

Y. Ueda, K. Ohta, M. Oda, M. Miwa, Y. Yamashita, Y. Tsuchiya, “Average value method: a new approach to practical optical computed tomography for a turbid medium such as human tissue,” Jpn. J. Appl. Phys. 37, 2717–2723 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (1)

M. Firbank, M. Oda, Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef]

Rev. Sci. Instrum. (2)

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

V. Ntziachristors, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Science (1)

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990).
[CrossRef] [PubMed]

Other (8)

R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 87–120.

S. R. Arridge, “Forward and inverse problems in time resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 35–64.

H. Eda, I. Oda, Y. Ito, Y. Wada, “Image reconstruction in optical CT using TEAM,” in Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 477–483 (1995).

J. Chang, R. Aronson, H. L. Graber, R. L. Barbour, “Imaging diffusive media using time-independent and time-harmonic sources: dependence of image quality on imaging algorithms, target volume, weight matrix, and view angles,” in Optical Tomography and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 448–464 (1995).

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 565–570 (1999).
[CrossRef]

Y. Painchaud, A. Mailloux, É. Harvey, S. Verreault, J. Fréchette, C. Gilbert, M. Vernon, P. Beaudry, “Multi-port time-domain laser mammography: results on solid phantom and volunteers,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 548–555 (1999).
[CrossRef]

M. Oda, Y. Yamashita, H. Kan, H. Miyajima, A. Nakkano, S. Suzuki, A. Suzuki, K. Shimizu, S. Muramatsu, N. Sugiura, K. Ohta, Y. Tsuchiya, “Advanced devices for near-infrared time-resolved spectroscopy and optical computed tomography: high sensitive/fast PMT, high power PLP, miniaturized CFD/TAC module and high speed multi-channel signal acquisition unit,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 765–773 (1997).

Y. Yamashita, M. Kaneko, “Visible and infrared diaphanoscopy for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, ed., Vol. IS11 of SPIE Institute for Advanced Optical Technologies Series (SPIE Optical Engineering Press, Bellingham, Wash., 1993), pp. 283–316.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Tissuelike solid phantom containing three absorbers with different optical properties.

Fig. 2
Fig. 2

Data-acquisition position on the XY plane. This configuration pattern is rotated every 10 deg along the cylinder surface. The measurement data are obtained for one incident light source at 15 places.

Fig. 3
Fig. 3

Range of image reconstruction in vertical cross section of solid phantom. Hatched area, reconstruction range. Cross-hatched area, data-acquisition range.

Fig. 4
Fig. 4

Experimental setup for DOT system. The Z axial data was acquired by means of moving the solid phantom through a holder to which a light source and detectors were attached 5 mm below the holder center. CFD/TAC, constant-fraction discriminator and time-to-amplitude converter.

Fig. 5
Fig. 5

Image of the difference value (Δμ a ) from the average absorption coefficient (the middle layer of the solid phantom). Blue and red curves indicate the simulation and the experimental results, respectively. Graph (I) shows the profile of the absorption coefficient in a transverse cross section of absorber C. Graph (II) shows the profile of the absorption coefficient in a transverse cross section of absorbers A and B. The scale interval of the transverse axis of the graph indicates 5 mm.

Fig. 6
Fig. 6

Image of the difference value (Δμ a ) from the average absorption coefficient (the vertical cross section, line 6). Blue and red curves indicate the simulation and the experimental results, respectively. Graph (III) shows the profile of the absorption coefficient in a vertical cross section of absorber A. Graph (IV) shows the profile of the absorption coefficient in a vertical cross section of absorber B. The scale interval of the transverse axis of the graph indicates 5 mm.

Fig. 7
Fig. 7

Image of the difference value (Δμ a ) from the average absorption coefficient (the vertical cross section, line 11). Blue and red curves indicate the simulation and the experimental results, respectively. Graph (V) shows the profile of the absorption coefficient in a vertical cross section of absorber C. The scale interval of the transverse axis of the graph indicates 5 mm.

Fig. 8
Fig. 8

Reconstruction result of the positive region by 3-D display. The threshold level is set at 20% of the positive maximum value.

Fig. 9
Fig. 9

Reconstruction result of the negative region by 3-D display. The threshold level is set at 50% of the negative maximum value.

Tables (1)

Tables Icon

Table 1 Results Confirming the Quantitativity

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔI=lnRI=ln R-ln I=i=1mμavμai Wi(μa)dμai=1n[(μai-μav)Wi(μav)]=i=1n[ΔμaiWi(μav)].
Δμa1Δμa2···Δμan=W11W21···Wn1W12W22···Wn2··················W1n····Wnn-1ΔI1ΔI2···ΔIn.

Metrics