Abstract

By use of a self-seeding technique, energetic nanosecond UV pulse trains of adjustable characteristics (number of pulses, pulse energy, interpulse delay) can be easily produced from an oscillator–amplifier XeCl laser system.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Uteza, N. Destouches, Ph. Delaporte, B. Fontaine, M. Sentis, “Nanosecond high-energy oscillator: regenerative amplifier excimer laser system,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 368–378 (2000).
    [CrossRef]
  2. P. B. Corkum, R. S. Taylor, “Picosecond amplification and kinetic studies of XeCl,” IEEE J. Quantum Electron. 18, 1962–1975 (1982).
    [CrossRef]

1982

P. B. Corkum, R. S. Taylor, “Picosecond amplification and kinetic studies of XeCl,” IEEE J. Quantum Electron. 18, 1962–1975 (1982).
[CrossRef]

Corkum, P. B.

P. B. Corkum, R. S. Taylor, “Picosecond amplification and kinetic studies of XeCl,” IEEE J. Quantum Electron. 18, 1962–1975 (1982).
[CrossRef]

Delaporte, Ph.

O. Uteza, N. Destouches, Ph. Delaporte, B. Fontaine, M. Sentis, “Nanosecond high-energy oscillator: regenerative amplifier excimer laser system,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 368–378 (2000).
[CrossRef]

Destouches, N.

O. Uteza, N. Destouches, Ph. Delaporte, B. Fontaine, M. Sentis, “Nanosecond high-energy oscillator: regenerative amplifier excimer laser system,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 368–378 (2000).
[CrossRef]

Fontaine, B.

O. Uteza, N. Destouches, Ph. Delaporte, B. Fontaine, M. Sentis, “Nanosecond high-energy oscillator: regenerative amplifier excimer laser system,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 368–378 (2000).
[CrossRef]

Sentis, M.

O. Uteza, N. Destouches, Ph. Delaporte, B. Fontaine, M. Sentis, “Nanosecond high-energy oscillator: regenerative amplifier excimer laser system,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 368–378 (2000).
[CrossRef]

Taylor, R. S.

P. B. Corkum, R. S. Taylor, “Picosecond amplification and kinetic studies of XeCl,” IEEE J. Quantum Electron. 18, 1962–1975 (1982).
[CrossRef]

Uteza, O.

O. Uteza, N. Destouches, Ph. Delaporte, B. Fontaine, M. Sentis, “Nanosecond high-energy oscillator: regenerative amplifier excimer laser system,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 368–378 (2000).
[CrossRef]

IEEE J. Quantum Electron.

P. B. Corkum, R. S. Taylor, “Picosecond amplification and kinetic studies of XeCl,” IEEE J. Quantum Electron. 18, 1962–1975 (1982).
[CrossRef]

Other

O. Uteza, N. Destouches, Ph. Delaporte, B. Fontaine, M. Sentis, “Nanosecond high-energy oscillator: regenerative amplifier excimer laser system,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 368–378 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the oscillator–amplifier laser system (not to scale). The off-axis angle is α ≈ 1.8° (not to scale). BPBS (i B = 56°); HWP, multiple-order half-wave plate; M1, M2, and M3, R max at 45° incidence. M3 is oriented for an incidence angle of ∼30° (R M3,30° = 94%). d 0 ≈ 1.8 m, d 1 = d 2 ≈ 1 m, d 3 ≈ 1.1 m, d 4 ≈ 0.1 m, d 5 ≈ 0.1 m, d 6 ≈ 0.5 m, and L ≈ 0.56 m. The amplifier is the LUX laser system delivering E LUX = 200 mJ, τFWHM,LUX = 140 ns, and P LUX,osc = 1.4 MW when equipped with a plane–plane cavity.

Fig. 2
Fig. 2

Temporal evolution of the laser instantaneous power (solid curve) and of the amplifier small signal gain (dotted curve) in case A (θλ/2 = 45°, 2 pulses, E total ≈ 17 ± 0.5 mJ). The energetic characteristics of each pulse are E P1 = 9.1 mJ, τFWHM,P1 = 3.9 ns and E P2 = 7.9 mJ, τFWHM,P2 = 3.9 ns.

Fig. 3
Fig. 3

Temporal evolution of the laser instantaneous power (solid curve) and of the amplifier small signal gain (dotted curve) in case B (θλ/2 = 28°, 3 pulses, E total ≈ 9 ± 0.5 mJ). The energetic characteristics of each pulse are E P1 = 3.2 mJ, τFWHM,P1 = 3.5 ns, E P2 = 3.4 mJ, τFWHM,P2 = 3.5 ns and E P3 = 2.3 mJ, τFWHM,P3 = 3.5 ns.

Metrics