Abstract

A kilohertz scanning optical delay line is demonstrated by means of employing a prism array formed by identical wedge prisms. The wedge prisms are lined up with one another and uniformly disposed on a rotational wheel. The optical path length of a light beam can thus be scanned as the prisms pass through the beam periodically. Scanning rate of 2 kHz, scanning amplitude of 3.5 mm, linearity of 99%, and duty cycle of 95% can be achieved simultaneously. Simplicity and rigidity are embedded in the design. Preliminary test results are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Fork, R. A. Beissoer, “Real-time intensity auto-correlation interferometer,” Appl. Opt. 17, 3534–3535 (1978).
    [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence topography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  3. L. Giniunas, R. Daniellus, R. Karkockas, “Scanning delay line with a rotating-parallelogram prism for low-coherence interferometry,” Appl. Opt. 38, 7076–7079 (1999).
    [CrossRef]
  4. C. L. Wang, C. L. Pan, “Scanning optical delay device having a helicoid reflecting mirror,” U.S. patent5,907,423 (25Mar.1999).
  5. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 16, 558–560 (1993).
    [CrossRef]
  6. G. Tearney, B. E. Bouina, J. G. Fujimoto, “Grating based phase control optical delay line,” U.S. patent6,111,645 (29Aug.2000).
  7. J. Ballif, R. Clanotti, Ph. Chavanne, R. Walti, R. P. Salathe, “Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry,” Opt. Lett. 22, 757–759 (1997).
    [CrossRef] [PubMed]

1999 (2)

1997 (1)

1993 (1)

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 16, 558–560 (1993).
[CrossRef]

1978 (1)

Ballif, J.

Beissoer, R. A.

Boppart, S. A.

Bouina, B. E.

G. Tearney, B. E. Bouina, J. G. Fujimoto, “Grating based phase control optical delay line,” U.S. patent6,111,645 (29Aug.2000).

Chavanne, Ph.

Chu, K. C.

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 16, 558–560 (1993).
[CrossRef]

Clanotti, R.

Daniellus, R.

Dienes, A.

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 16, 558–560 (1993).
[CrossRef]

Drexler, W.

Fork, R. F.

Fujimoto, J. G.

Giniunas, L.

Heritage, J. P.

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 16, 558–560 (1993).
[CrossRef]

Ippen, E. P.

Karkockas, R.

Kartner, F. X.

Kwong, K. F.

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 16, 558–560 (1993).
[CrossRef]

Li, X. D.

Morgner, U.

Pan, C. L.

C. L. Wang, C. L. Pan, “Scanning optical delay device having a helicoid reflecting mirror,” U.S. patent5,907,423 (25Mar.1999).

Pitris, C.

Salathe, R. P.

Tearney, G.

G. Tearney, B. E. Bouina, J. G. Fujimoto, “Grating based phase control optical delay line,” U.S. patent6,111,645 (29Aug.2000).

Walti, R.

Wang, C. L.

C. L. Wang, C. L. Pan, “Scanning optical delay device having a helicoid reflecting mirror,” U.S. patent5,907,423 (25Mar.1999).

Yankelevich, D.

K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 16, 558–560 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

First embodiment of the kilohertz SODL employing a prism array mounted on a rotational wheel. The prism array is mounted in a complementary orientation with a stationary prism.

Fig. 2
Fig. 2

Second embodiment of the kilohertz SODL employing a prism array mounted on a rotational wheel. The prism array is mounted to enable the use of minimum deviation angle.

Metrics