Abstract

We report on a horn-shaped electro-optic scanner based on a ferroelectric LiTaO3 wafer that is capable of scanning 632.8-nm light by an unprecedented 14.88° angle for extraordinary polarized light and by 4.05° for ordinary polarized light. The device concept is based on micropatterning ferroelectric domains in the shape of a series of optimized prisms whose refractive index is electric field tunable through the electro-optic effect. We demonstrate what we believe is a novel technique of using electro-optic imaging microscopy for in situ monitoring of the process of domain micropatterning during device fabrication, thus eliminating imperfect process control based on ex situ monitoring of transient currents.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
    [CrossRef]
  2. Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1201–1202 (1994).
    [CrossRef]
  3. J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1286–1488 (1996).
    [CrossRef]
  4. M. Yamada, M. Saitoh, H. Ooki, “Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
    [CrossRef]
  5. R. G. Batchko, V. Y. Shur, M. M. Fejer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
    [CrossRef]
  6. Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electro-optic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
    [CrossRef]
  7. J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electro-optic beam scanners: :experiment,” IEEE Photonic Technology Lett. 11, 66–68 (1999).
    [CrossRef]
  8. V. Gopalan, T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85, 2304–2311 (1999).
    [CrossRef]
  9. C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
    [CrossRef]
  10. J. F. Lotspeich, “Electro optic light-beam deflection,” IEEE Spectrum 5, 45–52 (1969).
    [CrossRef]
  11. V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
    [CrossRef]
  12. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
    [CrossRef]
  13. M. D. Feit, J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
    [CrossRef] [PubMed]
  14. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. App. Phy. 36, 1674–1677 (1965).
    [CrossRef]
  15. K. Onuki, N. Uchida, T. Saku, “Interferometric method for measuring electro-optic coefficients in crystals,” J. Opt. Soc. Am. 62, 1030–1032 (1972).
    [CrossRef]
  16. V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, D. D. Stancil, “Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86, 1638–1646 (1999).
    [CrossRef]
  17. V. Gopalan, T. E. Mitchell, “Wall velocities, switching times, and stabilization mechanism of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
    [CrossRef]
  18. V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid state platform for integrated optics,” Integrated Ferroelectrics 22, 465–471 (1998).
    [CrossRef]

1999 (6)

K. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
[CrossRef]

R. G. Batchko, V. Y. Shur, M. M. Fejer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[CrossRef]

Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electro-optic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electro-optic beam scanners: :experiment,” IEEE Photonic Technology Lett. 11, 66–68 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85, 2304–2311 (1999).
[CrossRef]

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, D. D. Stancil, “Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86, 1638–1646 (1999).
[CrossRef]

1998 (2)

V. Gopalan, T. E. Mitchell, “Wall velocities, switching times, and stabilization mechanism of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid state platform for integrated optics,” Integrated Ferroelectrics 22, 465–471 (1998).
[CrossRef]

1996 (4)

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1286–1488 (1996).
[CrossRef]

M. Yamada, M. Saitoh, H. Ooki, “Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

1994 (1)

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1201–1202 (1994).
[CrossRef]

1978 (1)

1976 (1)

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

1972 (1)

1969 (1)

J. F. Lotspeich, “Electro optic light-beam deflection,” IEEE Spectrum 5, 45–52 (1969).
[CrossRef]

1965 (1)

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. App. Phy. 36, 1674–1677 (1965).
[CrossRef]

Baron, C.

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

Batchko, R. G.

R. G. Batchko, V. Y. Shur, M. M. Fejer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[CrossRef]

Bond, W. L.

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. App. Phy. 36, 1674–1677 (1965).
[CrossRef]

Chen, Q. B.

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1201–1202 (1994).
[CrossRef]

Cheng, H.

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

Cheng, H. C.

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1286–1488 (1996).
[CrossRef]

Chiu, Y.

Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electro-optic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1201–1202 (1994).
[CrossRef]

Fang, J. C.

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electro-optic beam scanners: :experiment,” IEEE Photonic Technology Lett. 11, 66–68 (1999).
[CrossRef]

Feit, M. D.

M. D. Feit, J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
[CrossRef] [PubMed]

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Fejer, M. M.

R. G. Batchko, V. Y. Shur, M. M. Fejer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[CrossRef]

Fleck, J. A.

M. D. Feit, J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
[CrossRef] [PubMed]

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Gahagan, K.

Gerstl, S. S. A.

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, D. D. Stancil, “Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86, 1638–1646 (1999).
[CrossRef]

Gopalan, V.

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, D. D. Stancil, “Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86, 1638–1646 (1999).
[CrossRef]

K. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
[CrossRef]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electro-optic beam scanners: :experiment,” IEEE Photonic Technology Lett. 11, 66–68 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85, 2304–2311 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, “Wall velocities, switching times, and stabilization mechanism of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid state platform for integrated optics,” Integrated Ferroelectrics 22, 465–471 (1998).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

Gupta, M. C.

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

Itagi, A.

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, D. D. Stancil, “Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86, 1638–1646 (1999).
[CrossRef]

Jia, Q. X.

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, D. D. Stancil, “Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86, 1638–1646 (1999).
[CrossRef]

K. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid state platform for integrated optics,” Integrated Ferroelectrics 22, 465–471 (1998).
[CrossRef]

Kawas, M. J.

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electro-optic beam scanners: :experiment,” IEEE Photonic Technology Lett. 11, 66–68 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid state platform for integrated optics,” Integrated Ferroelectrics 22, 465–471 (1998).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1286–1488 (1996).
[CrossRef]

Lambeth, D. N.

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1286–1488 (1996).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1201–1202 (1994).
[CrossRef]

Li, J.

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1286–1488 (1996).
[CrossRef]

Lotspeich, J. F.

J. F. Lotspeich, “Electro optic light-beam deflection,” IEEE Spectrum 5, 45–52 (1969).
[CrossRef]

Mitchell, T. E.

V. Gopalan, T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85, 2304–2311 (1999).
[CrossRef]

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, D. D. Stancil, “Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86, 1638–1646 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid state platform for integrated optics,” Integrated Ferroelectrics 22, 465–471 (1998).
[CrossRef]

V. Gopalan, T. E. Mitchell, “Wall velocities, switching times, and stabilization mechanism of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
[CrossRef]

Morris, J. R.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Onuki, K.

Ooki, H.

M. Yamada, M. Saitoh, H. Ooki, “Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

Robinson, J. M.

K. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, “Integrated electro-optic lens/scanner in a LiTaO3 single crystal,” Appl. Opt. 38, 1186–1190 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid state platform for integrated optics,” Integrated Ferroelectrics 22, 465–471 (1998).
[CrossRef]

Saitoh, M.

M. Yamada, M. Saitoh, H. Ooki, “Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

Saku, T.

Schlesinger, T. E.

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, D. D. Stancil, “Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86, 1638–1646 (1999).
[CrossRef]

Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electro-optic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electro-optic beam scanners: :experiment,” IEEE Photonic Technology Lett. 11, 66–68 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid state platform for integrated optics,” Integrated Ferroelectrics 22, 465–471 (1998).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1286–1488 (1996).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1201–1202 (1994).
[CrossRef]

Shur, V. Y.

R. G. Batchko, V. Y. Shur, M. M. Fejer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[CrossRef]

Stancil, D. D.

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electro-optic beam scanners: :experiment,” IEEE Photonic Technology Lett. 11, 66–68 (1999).
[CrossRef]

Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electro-optic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, D. D. Stancil, “Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86, 1638–1646 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid state platform for integrated optics,” Integrated Ferroelectrics 22, 465–471 (1998).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1286–1488 (1996).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1201–1202 (1994).
[CrossRef]

Uchida, N.

Yamada, M.

M. Yamada, M. Saitoh, H. Ooki, “Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

Zou, J.

Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electro-optic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electro-optic beam scanners: :experiment,” IEEE Photonic Technology Lett. 11, 66–68 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. (1)

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Appl. Phys. Lett. (3)

M. Yamada, M. Saitoh, H. Ooki, “Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

R. G. Batchko, V. Y. Shur, M. M. Fejer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[CrossRef]

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

IEEE Photonic Technology Lett. (1)

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, D. D. Stancil, “Shape-optimized electro-optic beam scanners: :experiment,” IEEE Photonic Technology Lett. 11, 66–68 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1286–1488 (1996).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

IEEE Spectrum (1)

J. F. Lotspeich, “Electro optic light-beam deflection,” IEEE Spectrum 5, 45–52 (1969).
[CrossRef]

Integrated Ferroelectrics (1)

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid state platform for integrated optics,” Integrated Ferroelectrics 22, 465–471 (1998).
[CrossRef]

J. App. Phy. (1)

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. App. Phy. 36, 1674–1677 (1965).
[CrossRef]

J. Appl. Phys. (3)

V. Gopalan, S. S. A. Gerstl, A. Itagi, T. E. Mitchell, Q. X. Jia, T. E. Schlesinger, D. D. Stancil, “Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,” J. Appl. Phys. 86, 1638–1646 (1999).
[CrossRef]

V. Gopalan, T. E. Mitchell, “Wall velocities, switching times, and stabilization mechanism of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 83, 941–954 (1998).
[CrossRef]

V. Gopalan, T. E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” J. Appl. Phys. 85, 2304–2311 (1999).
[CrossRef]

J. Lightwave Technol. (2)

Y. Chiu, J. Zou, D. D. Stancil, T. E. Schlesinger, “Shape-optimized electro-optic beam scanners: analysis, design, and simulation,” J. Lightwave Technol. 17, 108–114 (1999).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1201–1202 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

BPM simulation of an extraordinary polarized light at 632.8 nm through a horn-shaped scanner in a z-cut LiTaO3 crystal. With a ±15-kV/mm field applied to the crystal in the z direction, the beam is deflected 8.1° from the optic axis. In the schematic W 1 = 250 mm, W 2 = 1500 mm, and L = 15 mm.

Fig. 2
Fig. 2

Schematic of in situ domain micropatterning apparatus with simultaneous optical imaging system in reflection mode to track domain nucleation and growth during device fabrication.

Fig. 3
Fig. 3

Selected video frames from in situ observation of domain growth in a patterned LiTaO3 with optical imaging in reflection. Three regions, labeled in frame (f) are, the original crystal beneath a Ta film electrode [region (3)], the domain-inverted region underneath the Ta-film electrode [region (2)], and the original crystal with no Ta-film electrode forming the prism pattern [region (1)]. The dark region is contrast visible at the boundary between domains. Domain growth starts at the electrode edge and advances into the electrode. Each successive frame shown here is separated by 3 s.

Fig. 4
Fig. 4

Voltage-transient current response during domain micropatterning to fabricate the electro-optic scanner. The computer control automatically maintained the transient current at a mean value of 1.2 µA (user-defined setpoint) by holding the voltage when the current reached or exceeded setpoint, and it incrementally ramped the voltage up when the current dropped below the setpoint. The inset plot shows a magnification over a 2-s interval, showing how the voltage is modified to hold the transient current relatively constant near the setpoint (shown by dotted line).

Fig. 5
Fig. 5

Schematic of the testing apparatus for characterizing the electro-optic scanner.

Fig. 6
Fig. 6

Deflection angle as a function of applied voltage for extraordinary polarized input light (index n e ). Circles, measured data; straight line, BPM prediction.

Fig. 7
Fig. 7

Deflection as a function of applied voltage for ordinary polarized input light (index n o ). Circles, measured data; straight line, BPM prediction.

Fig. 8
Fig. 8

Multiple-exposure image of the beam showing 17 resolvable spots, with the adjacent spots separated by 1/e 2 Gaussian beam diameter. The images were taken at a distance D = 45.77 mm from the device output over a range of scanning voltages from -3820 to +3820. A curve plot below the image shows the linear intensity profile along a horizontal line through the center of the image.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θint=ΔnnLW,
d2xdz2=Δnne1Wz,
Wz2=xz+w01+λ0z-z0πnew0221/2,

Metrics