Abstract

The performance of commercially available InGaAs/InP avalanche photodiodes as single-photon detectors at a 1.55-µm wavelength has been investigated. A new active quenching and gating circuit, tailored for operation of these diodes at temperatures in the range from room temperature to -60 °C and achievable by means of thermoelectrical cooling, has been developed. Careful tuning of the diodes’ operating conditions resulted in a significant reduction of afterpulsing effects; it permitted operation of the detectors with high repetition rates. A noise-equivalent power of 7 × 10-16 W/Hz1/2 was obtained at a 1.55-µm wavelength.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kunimori, B. Greene, K. Hamal, I. Prochazka, “Centimeter precision eye-safe satellite laser ranging using a Raman shifted Nd:YAG laser and germanium photon counter,” J. Opt. A 2, 1–4 (2000).
    [CrossRef]
  2. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detectors,” Appl. Opt. 35, 1956–1973 (1996).
    [CrossRef] [PubMed]
  3. I. Prochazka, K. Hamal, B. Sopko, I. Macha, “Novel contribution in branch of ultra-fast condensed matter spectroscopic photon counting system,” Microelectron. Eng. 19, 643–648 (1992).
    [CrossRef]
  4. I. Prochazka, K. Hamal, B. Greene, H. Kunimori, “Large aperture germanium detector package for picosecond photon counting in the 0.5–1.6 µm range,” Opt. Lett. 21, 1375–1377 (1996).
    [CrossRef] [PubMed]
  5. A. Lacaita, F. Zappa, S. Cova, P. Lovati, “Single photon detection beyond 1 µm: performance of commercially available InGaAs/InP detectors,” Appl. Opt. 35, 2986–2996 (1996).
    [CrossRef] [PubMed]
  6. G. Ribordy, J.-D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
    [CrossRef]
  7. J. Rarity, T. E. Wall, K.-D. Ridle, P. C. Owens, P. R. Taster, “Single-photon counting for the 1300–1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt. 39, 6746–6753 (2000).
    [CrossRef]
  8. I. Prochazka, K. Hamal, J. Blazej, G. Kirchner, F. Koidl, “Extended dynamical range solid state photon counter,” in Photodetectors: Materials and Devices III, G. J. Brown, ed., Proc. SPIE3287, 336–340 (1998).

2000 (2)

H. Kunimori, B. Greene, K. Hamal, I. Prochazka, “Centimeter precision eye-safe satellite laser ranging using a Raman shifted Nd:YAG laser and germanium photon counter,” J. Opt. A 2, 1–4 (2000).
[CrossRef]

J. Rarity, T. E. Wall, K.-D. Ridle, P. C. Owens, P. R. Taster, “Single-photon counting for the 1300–1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt. 39, 6746–6753 (2000).
[CrossRef]

1998 (1)

1996 (3)

1992 (1)

I. Prochazka, K. Hamal, B. Sopko, I. Macha, “Novel contribution in branch of ultra-fast condensed matter spectroscopic photon counting system,” Microelectron. Eng. 19, 643–648 (1992).
[CrossRef]

Blazej, J.

I. Prochazka, K. Hamal, J. Blazej, G. Kirchner, F. Koidl, “Extended dynamical range solid state photon counter,” in Photodetectors: Materials and Devices III, G. J. Brown, ed., Proc. SPIE3287, 336–340 (1998).

Cova, S.

Gautier, J.-D.

Ghioni, M.

Gisin, N.

Greene, B.

H. Kunimori, B. Greene, K. Hamal, I. Prochazka, “Centimeter precision eye-safe satellite laser ranging using a Raman shifted Nd:YAG laser and germanium photon counter,” J. Opt. A 2, 1–4 (2000).
[CrossRef]

I. Prochazka, K. Hamal, B. Greene, H. Kunimori, “Large aperture germanium detector package for picosecond photon counting in the 0.5–1.6 µm range,” Opt. Lett. 21, 1375–1377 (1996).
[CrossRef] [PubMed]

Hamal, K.

H. Kunimori, B. Greene, K. Hamal, I. Prochazka, “Centimeter precision eye-safe satellite laser ranging using a Raman shifted Nd:YAG laser and germanium photon counter,” J. Opt. A 2, 1–4 (2000).
[CrossRef]

I. Prochazka, K. Hamal, B. Greene, H. Kunimori, “Large aperture germanium detector package for picosecond photon counting in the 0.5–1.6 µm range,” Opt. Lett. 21, 1375–1377 (1996).
[CrossRef] [PubMed]

I. Prochazka, K. Hamal, B. Sopko, I. Macha, “Novel contribution in branch of ultra-fast condensed matter spectroscopic photon counting system,” Microelectron. Eng. 19, 643–648 (1992).
[CrossRef]

I. Prochazka, K. Hamal, J. Blazej, G. Kirchner, F. Koidl, “Extended dynamical range solid state photon counter,” in Photodetectors: Materials and Devices III, G. J. Brown, ed., Proc. SPIE3287, 336–340 (1998).

Kirchner, G.

I. Prochazka, K. Hamal, J. Blazej, G. Kirchner, F. Koidl, “Extended dynamical range solid state photon counter,” in Photodetectors: Materials and Devices III, G. J. Brown, ed., Proc. SPIE3287, 336–340 (1998).

Koidl, F.

I. Prochazka, K. Hamal, J. Blazej, G. Kirchner, F. Koidl, “Extended dynamical range solid state photon counter,” in Photodetectors: Materials and Devices III, G. J. Brown, ed., Proc. SPIE3287, 336–340 (1998).

Kunimori, H.

H. Kunimori, B. Greene, K. Hamal, I. Prochazka, “Centimeter precision eye-safe satellite laser ranging using a Raman shifted Nd:YAG laser and germanium photon counter,” J. Opt. A 2, 1–4 (2000).
[CrossRef]

I. Prochazka, K. Hamal, B. Greene, H. Kunimori, “Large aperture germanium detector package for picosecond photon counting in the 0.5–1.6 µm range,” Opt. Lett. 21, 1375–1377 (1996).
[CrossRef] [PubMed]

Lacaita, A.

Lovati, P.

Macha, I.

I. Prochazka, K. Hamal, B. Sopko, I. Macha, “Novel contribution in branch of ultra-fast condensed matter spectroscopic photon counting system,” Microelectron. Eng. 19, 643–648 (1992).
[CrossRef]

Owens, P. C.

Prochazka, I.

H. Kunimori, B. Greene, K. Hamal, I. Prochazka, “Centimeter precision eye-safe satellite laser ranging using a Raman shifted Nd:YAG laser and germanium photon counter,” J. Opt. A 2, 1–4 (2000).
[CrossRef]

I. Prochazka, K. Hamal, B. Greene, H. Kunimori, “Large aperture germanium detector package for picosecond photon counting in the 0.5–1.6 µm range,” Opt. Lett. 21, 1375–1377 (1996).
[CrossRef] [PubMed]

I. Prochazka, K. Hamal, B. Sopko, I. Macha, “Novel contribution in branch of ultra-fast condensed matter spectroscopic photon counting system,” Microelectron. Eng. 19, 643–648 (1992).
[CrossRef]

I. Prochazka, K. Hamal, J. Blazej, G. Kirchner, F. Koidl, “Extended dynamical range solid state photon counter,” in Photodetectors: Materials and Devices III, G. J. Brown, ed., Proc. SPIE3287, 336–340 (1998).

Rarity, J.

Ribordy, G.

Ridle, K.-D.

Samori, C.

Sopko, B.

I. Prochazka, K. Hamal, B. Sopko, I. Macha, “Novel contribution in branch of ultra-fast condensed matter spectroscopic photon counting system,” Microelectron. Eng. 19, 643–648 (1992).
[CrossRef]

Taster, P. R.

Wall, T. E.

Zappa, F.

Zbinden, H.

Appl. Opt. (4)

J. Opt. A (1)

H. Kunimori, B. Greene, K. Hamal, I. Prochazka, “Centimeter precision eye-safe satellite laser ranging using a Raman shifted Nd:YAG laser and germanium photon counter,” J. Opt. A 2, 1–4 (2000).
[CrossRef]

Microelectron. Eng. (1)

I. Prochazka, K. Hamal, B. Sopko, I. Macha, “Novel contribution in branch of ultra-fast condensed matter spectroscopic photon counting system,” Microelectron. Eng. 19, 643–648 (1992).
[CrossRef]

Opt. Lett. (1)

Other (1)

I. Prochazka, K. Hamal, J. Blazej, G. Kirchner, F. Koidl, “Extended dynamical range solid state photon counter,” in Photodetectors: Materials and Devices III, G. J. Brown, ed., Proc. SPIE3287, 336–340 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Passive quenching and gating circuit of the avalanche photodiode operating as a photon counter.

Fig. 2
Fig. 2

Schematic of an active quenching and gating circuit. Abbreviations are defined in text. The resistors R1 are the comparator input loads.

Fig. 3
Fig. 3

Output pulse of the EG&G diode, 0.5 V above breakdown, with passive quenching and gating at room temperature, recorded on a digitizing scope with an analog bandwidth of 400 MHz. The first (longer) pulse is cross talk of the gate pulse; the second pulse (triangle) is a response to avalanche buildup.

Fig. 4
Fig. 4

Experimental setup for InGaAs/InP photon-counter tests. The neutral-density filter, at 50% transmission. PC, personal computer.

Fig. 5
Fig. 5

Time-correlated photon-counting data: 1.55-µm wavelength; laser pulse length, 0.4 ns; horizontal scale, 160 ps/channel; FWHM timing resolution.

Fig. 6
Fig. 6

Effective dark count as functions of temperature, active quenching, and a 10-kHz repetition rate at 0.5 V above breakdown.

Fig. 7
Fig. 7

Timing resolution FWHM and SNR as functions of temperature, active quenching, and a 10-kHz repetition rate at 0.5 V above breakdown.

Fig. 8
Fig. 8

SNR and timing resolution FWHM as functions of voltage above breakdown with active quenching, a 10-kHz repetition rate, an EG&G diode at -48 °C and a Fujitsu diode at -61 °C.

Fig. 9
Fig. 9

Dark-count rate versus gate repetition rate for the optimum detector configuration, an EG&G diode, and active quenching.

Metrics