Abstract

Use of an interline transfer CCD camera for the acquisition of broadband coherent anti-Stokes Raman-scattering (CARS) spectra is demonstrated. The interline transfer CCD has alternating columns of imaging and storage pixels that allow one to acquire two successive images by shifting the first image in the storage pixels and immediately acquiring the second image. We have used this dual-image mode for gated CARS measurements by acquiring a CARS spectral image and shifting it rapidly from the imaging pixel columns to the storage pixel columns. We have demonstrated the use of this dual-image mode for gated single-laser-shot measurement of hydrogen and nitrogen CARS spectra at room temperature and in atmospheric pressure flames. The performance of the interline transfer CCD for these CARS measurements is compared directly with the performance of a back-illuminated unintensified CCD camera.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Paul, “The application of intensified array detectors to quantitative planar laser-induced fluorescence imaging,” paper AIAA 91-2315, presented at the Twenty-Seventh Joint Propulsion Conference, Sacramento, California, 24–26 June 1991 (American Institute of Aeronautics and Astronautics, New York, 1991).
  2. J. A. Wehrmeyer, S. Yeralan, K. S. Tecu, “Multispecies Raman imaging in flames by use of an unintensified charge-coupled device,” Opt. Lett. 20, 934–936 (1995).
    [CrossRef] [PubMed]
  3. G. C. Holst, ed., CCD Arrays, Cameras and Displays, 2nd ed., Vol. PM57 of SPIE Press Monograph Series (SPIE, Bellingham, Wash., 1998).
  4. Micromax 5 MHz Operation Manual, Roper Scientific, Princeton Instruments, Inc., 3660 Quakerbridge Road, Trenton, N.J. 08619.
  5. M. A. Woodmansee, R. P. Lucht, J. C. Dutton, “Development of high-resolution N2 CARS for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt. 39, 6243–6256 (2000).
    [CrossRef]
  6. Spectra Video Camera User’s Manual, Pixelvision Inc., 15250 N.W. Greenbrier Pkwy., Beaverton, Ore. 97006.
  7. A. C. Eckbreth, ed., Laser Diagnostics for Combustion Temperature and Species, Vol. 3 of Combustion Science and Technology Services (Gordon and Breach, New York, 1996).
  8. S. W. Heneghan, M. D. Vangsness, “Analysis of slit function errors in single-shot coherent anti-Stokes Raman spectroscopy (CARS) in practical combustors,” Rev. Sci. Instrum. 62, 2093–2099 (1991).
    [CrossRef]
  9. K. Akihama, T. Asai, “Improvement in temperature measurement accuracy of Q-branch CARS thermometry (effects of spectral resolution of detection system),” JSME Int. J. Ser. B 36, 364–370 (1993).
    [CrossRef]
  10. D. J. Rakestraw, R. P. Lucht, T. Dreier, “Use of a charge-coupled device camera for broadband coherent anti-Stokes Raman scattering measurements,” Appl. Opt. 28, 4116–4120 (1989).
    [CrossRef] [PubMed]
  11. G. W. Baxter, M. J. Johnson, J. G. Haub, B. J. Orr, “OPO CARS: coherent anti-Stokes Raman scattering using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251, 211–218 (1996).
    [CrossRef]
  12. P. Magre, F. Aguerre, G. Collin, P. Versaevel, F. Lacas, J. C. Rolon, “Temperature and concentration measurements by CARS in counterflow laminar diffusion flames,” Exp. Fluids 18, 376–382 (1995).
    [CrossRef]
  13. S. N. Park, J. W. Hahn, C. Rhee, “Effect of the slit function of the detection system and a fast-fitting algorithm on accuracy of CARS temperature,” Appl. Spectrosc. 48, 737–741 (1994).
    [CrossRef]
  14. W. Clauss, V. I. Fabelinsky, D. N. Kozlov, V. V. Smirnov, O. M. Stelmakh, K. A. Vereschagin, “Dual-broadband CARS temperature measurements in hydrogen-oxygen atmospheric pressure flames,” Appl. Phys. B 70, 127–131 (2000).
    [CrossRef]
  15. M. Fischer, E. Magens, H. Weisgerber, A. Winandy, S. Cordes, “Coherent anti-Stokes Raman scattering temperature measurements on an air-breathing ramjet model,” AIAA J. 37, 744–750 (1999).
    [CrossRef]
  16. M. Schenk, A. Thumann, T. Seeger, A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot simultaneous temperature and relative N2–O2 concentration,” Appl. Opt. 37, 5659–5671 (1998).
    [CrossRef]
  17. I. Plath, W. Meier, W. Stricker, “Application of a backside-illuminated charge-coupled-device camera for single-pulse coherent anti-Stokes Raman spectroscopy N2 thermometry,” Opt. Lett. 17, 79–81 (1992).
    [CrossRef] [PubMed]
  18. M. C. Thurber, R. K. Hanson, “Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence,” Exp. Fluids 30, 93–101 (2001).
    [CrossRef]

2001 (1)

M. C. Thurber, R. K. Hanson, “Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence,” Exp. Fluids 30, 93–101 (2001).
[CrossRef]

2000 (2)

W. Clauss, V. I. Fabelinsky, D. N. Kozlov, V. V. Smirnov, O. M. Stelmakh, K. A. Vereschagin, “Dual-broadband CARS temperature measurements in hydrogen-oxygen atmospheric pressure flames,” Appl. Phys. B 70, 127–131 (2000).
[CrossRef]

M. A. Woodmansee, R. P. Lucht, J. C. Dutton, “Development of high-resolution N2 CARS for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt. 39, 6243–6256 (2000).
[CrossRef]

1999 (1)

M. Fischer, E. Magens, H. Weisgerber, A. Winandy, S. Cordes, “Coherent anti-Stokes Raman scattering temperature measurements on an air-breathing ramjet model,” AIAA J. 37, 744–750 (1999).
[CrossRef]

1998 (1)

1996 (1)

G. W. Baxter, M. J. Johnson, J. G. Haub, B. J. Orr, “OPO CARS: coherent anti-Stokes Raman scattering using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251, 211–218 (1996).
[CrossRef]

1995 (2)

P. Magre, F. Aguerre, G. Collin, P. Versaevel, F. Lacas, J. C. Rolon, “Temperature and concentration measurements by CARS in counterflow laminar diffusion flames,” Exp. Fluids 18, 376–382 (1995).
[CrossRef]

J. A. Wehrmeyer, S. Yeralan, K. S. Tecu, “Multispecies Raman imaging in flames by use of an unintensified charge-coupled device,” Opt. Lett. 20, 934–936 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

K. Akihama, T. Asai, “Improvement in temperature measurement accuracy of Q-branch CARS thermometry (effects of spectral resolution of detection system),” JSME Int. J. Ser. B 36, 364–370 (1993).
[CrossRef]

1992 (1)

1991 (1)

S. W. Heneghan, M. D. Vangsness, “Analysis of slit function errors in single-shot coherent anti-Stokes Raman spectroscopy (CARS) in practical combustors,” Rev. Sci. Instrum. 62, 2093–2099 (1991).
[CrossRef]

1989 (1)

Aguerre, F.

P. Magre, F. Aguerre, G. Collin, P. Versaevel, F. Lacas, J. C. Rolon, “Temperature and concentration measurements by CARS in counterflow laminar diffusion flames,” Exp. Fluids 18, 376–382 (1995).
[CrossRef]

Akihama, K.

K. Akihama, T. Asai, “Improvement in temperature measurement accuracy of Q-branch CARS thermometry (effects of spectral resolution of detection system),” JSME Int. J. Ser. B 36, 364–370 (1993).
[CrossRef]

Asai, T.

K. Akihama, T. Asai, “Improvement in temperature measurement accuracy of Q-branch CARS thermometry (effects of spectral resolution of detection system),” JSME Int. J. Ser. B 36, 364–370 (1993).
[CrossRef]

Baxter, G. W.

G. W. Baxter, M. J. Johnson, J. G. Haub, B. J. Orr, “OPO CARS: coherent anti-Stokes Raman scattering using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251, 211–218 (1996).
[CrossRef]

Clauss, W.

W. Clauss, V. I. Fabelinsky, D. N. Kozlov, V. V. Smirnov, O. M. Stelmakh, K. A. Vereschagin, “Dual-broadband CARS temperature measurements in hydrogen-oxygen atmospheric pressure flames,” Appl. Phys. B 70, 127–131 (2000).
[CrossRef]

Collin, G.

P. Magre, F. Aguerre, G. Collin, P. Versaevel, F. Lacas, J. C. Rolon, “Temperature and concentration measurements by CARS in counterflow laminar diffusion flames,” Exp. Fluids 18, 376–382 (1995).
[CrossRef]

Cordes, S.

M. Fischer, E. Magens, H. Weisgerber, A. Winandy, S. Cordes, “Coherent anti-Stokes Raman scattering temperature measurements on an air-breathing ramjet model,” AIAA J. 37, 744–750 (1999).
[CrossRef]

Dreier, T.

Dutton, J. C.

Fabelinsky, V. I.

W. Clauss, V. I. Fabelinsky, D. N. Kozlov, V. V. Smirnov, O. M. Stelmakh, K. A. Vereschagin, “Dual-broadband CARS temperature measurements in hydrogen-oxygen atmospheric pressure flames,” Appl. Phys. B 70, 127–131 (2000).
[CrossRef]

Fischer, M.

M. Fischer, E. Magens, H. Weisgerber, A. Winandy, S. Cordes, “Coherent anti-Stokes Raman scattering temperature measurements on an air-breathing ramjet model,” AIAA J. 37, 744–750 (1999).
[CrossRef]

Hahn, J. W.

Hanson, R. K.

M. C. Thurber, R. K. Hanson, “Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence,” Exp. Fluids 30, 93–101 (2001).
[CrossRef]

Haub, J. G.

G. W. Baxter, M. J. Johnson, J. G. Haub, B. J. Orr, “OPO CARS: coherent anti-Stokes Raman scattering using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251, 211–218 (1996).
[CrossRef]

Heneghan, S. W.

S. W. Heneghan, M. D. Vangsness, “Analysis of slit function errors in single-shot coherent anti-Stokes Raman spectroscopy (CARS) in practical combustors,” Rev. Sci. Instrum. 62, 2093–2099 (1991).
[CrossRef]

Johnson, M. J.

G. W. Baxter, M. J. Johnson, J. G. Haub, B. J. Orr, “OPO CARS: coherent anti-Stokes Raman scattering using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251, 211–218 (1996).
[CrossRef]

Kozlov, D. N.

W. Clauss, V. I. Fabelinsky, D. N. Kozlov, V. V. Smirnov, O. M. Stelmakh, K. A. Vereschagin, “Dual-broadband CARS temperature measurements in hydrogen-oxygen atmospheric pressure flames,” Appl. Phys. B 70, 127–131 (2000).
[CrossRef]

Lacas, F.

P. Magre, F. Aguerre, G. Collin, P. Versaevel, F. Lacas, J. C. Rolon, “Temperature and concentration measurements by CARS in counterflow laminar diffusion flames,” Exp. Fluids 18, 376–382 (1995).
[CrossRef]

Leipertz, A.

Lucht, R. P.

Magens, E.

M. Fischer, E. Magens, H. Weisgerber, A. Winandy, S. Cordes, “Coherent anti-Stokes Raman scattering temperature measurements on an air-breathing ramjet model,” AIAA J. 37, 744–750 (1999).
[CrossRef]

Magre, P.

P. Magre, F. Aguerre, G. Collin, P. Versaevel, F. Lacas, J. C. Rolon, “Temperature and concentration measurements by CARS in counterflow laminar diffusion flames,” Exp. Fluids 18, 376–382 (1995).
[CrossRef]

Meier, W.

Orr, B. J.

G. W. Baxter, M. J. Johnson, J. G. Haub, B. J. Orr, “OPO CARS: coherent anti-Stokes Raman scattering using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251, 211–218 (1996).
[CrossRef]

Park, S. N.

Paul, P. H.

P. H. Paul, “The application of intensified array detectors to quantitative planar laser-induced fluorescence imaging,” paper AIAA 91-2315, presented at the Twenty-Seventh Joint Propulsion Conference, Sacramento, California, 24–26 June 1991 (American Institute of Aeronautics and Astronautics, New York, 1991).

Plath, I.

Rakestraw, D. J.

Rhee, C.

Rolon, J. C.

P. Magre, F. Aguerre, G. Collin, P. Versaevel, F. Lacas, J. C. Rolon, “Temperature and concentration measurements by CARS in counterflow laminar diffusion flames,” Exp. Fluids 18, 376–382 (1995).
[CrossRef]

Schenk, M.

Seeger, T.

Smirnov, V. V.

W. Clauss, V. I. Fabelinsky, D. N. Kozlov, V. V. Smirnov, O. M. Stelmakh, K. A. Vereschagin, “Dual-broadband CARS temperature measurements in hydrogen-oxygen atmospheric pressure flames,” Appl. Phys. B 70, 127–131 (2000).
[CrossRef]

Stelmakh, O. M.

W. Clauss, V. I. Fabelinsky, D. N. Kozlov, V. V. Smirnov, O. M. Stelmakh, K. A. Vereschagin, “Dual-broadband CARS temperature measurements in hydrogen-oxygen atmospheric pressure flames,” Appl. Phys. B 70, 127–131 (2000).
[CrossRef]

Stricker, W.

Tecu, K. S.

Thumann, A.

Thurber, M. C.

M. C. Thurber, R. K. Hanson, “Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence,” Exp. Fluids 30, 93–101 (2001).
[CrossRef]

Vangsness, M. D.

S. W. Heneghan, M. D. Vangsness, “Analysis of slit function errors in single-shot coherent anti-Stokes Raman spectroscopy (CARS) in practical combustors,” Rev. Sci. Instrum. 62, 2093–2099 (1991).
[CrossRef]

Vereschagin, K. A.

W. Clauss, V. I. Fabelinsky, D. N. Kozlov, V. V. Smirnov, O. M. Stelmakh, K. A. Vereschagin, “Dual-broadband CARS temperature measurements in hydrogen-oxygen atmospheric pressure flames,” Appl. Phys. B 70, 127–131 (2000).
[CrossRef]

Versaevel, P.

P. Magre, F. Aguerre, G. Collin, P. Versaevel, F. Lacas, J. C. Rolon, “Temperature and concentration measurements by CARS in counterflow laminar diffusion flames,” Exp. Fluids 18, 376–382 (1995).
[CrossRef]

Wehrmeyer, J. A.

Weisgerber, H.

M. Fischer, E. Magens, H. Weisgerber, A. Winandy, S. Cordes, “Coherent anti-Stokes Raman scattering temperature measurements on an air-breathing ramjet model,” AIAA J. 37, 744–750 (1999).
[CrossRef]

Winandy, A.

M. Fischer, E. Magens, H. Weisgerber, A. Winandy, S. Cordes, “Coherent anti-Stokes Raman scattering temperature measurements on an air-breathing ramjet model,” AIAA J. 37, 744–750 (1999).
[CrossRef]

Woodmansee, M. A.

Yeralan, S.

AIAA J. (1)

M. Fischer, E. Magens, H. Weisgerber, A. Winandy, S. Cordes, “Coherent anti-Stokes Raman scattering temperature measurements on an air-breathing ramjet model,” AIAA J. 37, 744–750 (1999).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

W. Clauss, V. I. Fabelinsky, D. N. Kozlov, V. V. Smirnov, O. M. Stelmakh, K. A. Vereschagin, “Dual-broadband CARS temperature measurements in hydrogen-oxygen atmospheric pressure flames,” Appl. Phys. B 70, 127–131 (2000).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

G. W. Baxter, M. J. Johnson, J. G. Haub, B. J. Orr, “OPO CARS: coherent anti-Stokes Raman scattering using tunable optical parametric oscillators injection-seeded by external-cavity diode lasers,” Chem. Phys. Lett. 251, 211–218 (1996).
[CrossRef]

Exp. Fluids (2)

P. Magre, F. Aguerre, G. Collin, P. Versaevel, F. Lacas, J. C. Rolon, “Temperature and concentration measurements by CARS in counterflow laminar diffusion flames,” Exp. Fluids 18, 376–382 (1995).
[CrossRef]

M. C. Thurber, R. K. Hanson, “Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence,” Exp. Fluids 30, 93–101 (2001).
[CrossRef]

JSME Int. J. Ser. B (1)

K. Akihama, T. Asai, “Improvement in temperature measurement accuracy of Q-branch CARS thermometry (effects of spectral resolution of detection system),” JSME Int. J. Ser. B 36, 364–370 (1993).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

S. W. Heneghan, M. D. Vangsness, “Analysis of slit function errors in single-shot coherent anti-Stokes Raman spectroscopy (CARS) in practical combustors,” Rev. Sci. Instrum. 62, 2093–2099 (1991).
[CrossRef]

Other (5)

P. H. Paul, “The application of intensified array detectors to quantitative planar laser-induced fluorescence imaging,” paper AIAA 91-2315, presented at the Twenty-Seventh Joint Propulsion Conference, Sacramento, California, 24–26 June 1991 (American Institute of Aeronautics and Astronautics, New York, 1991).

G. C. Holst, ed., CCD Arrays, Cameras and Displays, 2nd ed., Vol. PM57 of SPIE Press Monograph Series (SPIE, Bellingham, Wash., 1998).

Micromax 5 MHz Operation Manual, Roper Scientific, Princeton Instruments, Inc., 3660 Quakerbridge Road, Trenton, N.J. 08619.

Spectra Video Camera User’s Manual, Pixelvision Inc., 15250 N.W. Greenbrier Pkwy., Beaverton, Ore. 97006.

A. C. Eckbreth, ed., Laser Diagnostics for Combustion Temperature and Species, Vol. 3 of Combustion Science and Technology Services (Gordon and Breach, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Architecture and readout process of the interline transfer CCD. (a) Transferring image to storage pixels. (b) First image is transferring to the readout register and the second exposure begins. The second image is transferred to the storage pixels only after the completion of the readout of the first image.4

Fig. 2
Fig. 2

Schematic diagram of the broadband CARS setup in a flame. L, lens; R, half-wave plate; P, polarizer; DC, dye cell; T, telescope; AMP, amplifier; OSC, oscillator.

Fig. 3
Fig. 3

Triggering diagram for the interline transfer CCD camera.

Fig. 4
Fig. 4

Room-air nitrogen spectra acquired with the back-illuminated CCD and with the interline transfer CCD camera. The solid curves represent experimental spectra, and the theoretical fits are shown by the dashed curves.

Fig. 5
Fig. 5

(a) and (b) Single-shot nitrogen CARS spectra acquired with the interline transfer CCD camera for atmospheric pressure CH4–air flame. Laser energies of 40 mJ (total) at 532 nm and 25 mJ at 607 nm were used. (c) CARS spectra averaged over 200 laser shots.

Fig. 6
Fig. 6

(a) Hydrogen CARS spectra in an atmospheric pressure hydrogen–air flame. The spectrum is acquired by the dual-image mode of the interline transfer CCD and is averaged over 60 single-shot files. (b) Enlarged version of (a) to show the absence of noise from room light.

Fig. 7
Fig. 7

(a) Hydrogen CARS spectra acquired without use of the dual-image mode of the interline transfer CCD camera for atmospheric pressure hydrogen–air flame. (b) Enlarged version of (a) after the background is subtracted. The spectra were the average of 40 laser shots.

Fig. 8
Fig. 8

(a) Theoretical SNR characteristics of the interline transfer CCD, the CCD with a MCP intensifier, and the back-illuminated unintensified CCD. (Arrow indicates the saturation limit.) (b) Enlarged version (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SNR=NpηGe,MCP[NpηGe,MCPGe,MCPκ+1+Nx/Ge,phos2]1/2,
SNR=NpηNpη+Nx21/2.

Metrics