Abstract

We have stacked subwavelength gratings (SWGs) on a single substrate to create a compact, integrated circular polarization filter. The SWGs consist of a wire grid polarizer and a broadband form-birefringent quarter-wave plate (QWP). Rigorous coupled-wave analysis was used to design the QWP for operation over the 3.5–5.0-µm wavelength range. The fabricated silicon broadband QWP exhibited a phase retardance of 82–97° across this wavelength range. Two stacked structures are presented, each with a different wire grid polarizer fabricated on an organic planarization layer (SU-8) that is deposited on a QWP grating. Transmittance measurements of the first structure when illuminated with nominally right- and left-circularly polarized light indicate a circular extinction ratio (CER) limited by the low linear extinction ratio of the polarizer. Use of a wire grid polarizer with a higher extinct ratio led to a stacked SWG structure that demonstrated CERs of 10–45 across the 3.5–5.0-µm wavelength range.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983).
    [CrossRef] [PubMed]
  2. G. R. Bird, M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886–891 (1960).
    [CrossRef]
  3. E. B. Grann, M. G. Moharam, D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Vac. Sci. Technol. B 12, 333–339 (1995).
  4. D. H. Raguin, G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
    [CrossRef] [PubMed]
  5. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
    [CrossRef]
  6. S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14, 629–639 (1997).
    [CrossRef]
  7. W. Stork, N. Streibl, H. Haidner, P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16, 1921–1923 (1991).
    [CrossRef] [PubMed]
  8. J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Subwavelength, binary lenses at infrared wavelengths,” J. Vac. Sci. Technol. B 15, 2946–2949 (1997).
    [CrossRef]
  9. G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Diffractive optical element for Stokes vector measurement with a focal plane array,” in Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 169–177 (1999).
  10. G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
    [CrossRef]
  11. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [CrossRef]
  12. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
    [CrossRef]
  13. A. G. Lopez, H. G. Craighead, “Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating,” Opt. Lett. 23, 1627–1629 (1998).
    [CrossRef]
  14. S. Y. Chou, S. J. Schablitsky, L. Zhuang, “Application of amorphous silicon gratings in polarization switching vertical-cavity surface-emitting lasers,” J. Vac. Sci. Technol. B 15, 2864–2867 (1997).
    [CrossRef]
  15. H. Kikuta, Y. Ohira, K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997).
    [CrossRef] [PubMed]
  16. G. P. Nordin, P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5, 163–168 (1999), http://www.opticsexpress.org .
    [CrossRef]
  17. W. L. Wolfe, G. J. Zissis, The Infrared Handbook (Infrared Information Analysis Center, Environmental Research Institute of Michigan, Ann Arbor, Mich., 1985), pp. 7–76.
  18. P. Van Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing, 3rd ed. (McGraw-Hill, New York, 1997), p. 306.
  19. S. Grigoropoulos, E. Gogolides, A. D. Tserepi, A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
    [CrossRef]
  20. D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28(2), 120–125 (1989).
  21. P. C. Deguzman, “Stacked subwavelength gratings for imaging polarimetry,” Ph.D. dissertation (University of Alabama in Huntsville, Huntsville, Ala., 2000).

1999 (2)

1998 (1)

1997 (5)

S. Y. Chou, S. J. Schablitsky, L. Zhuang, “Application of amorphous silicon gratings in polarization switching vertical-cavity surface-emitting lasers,” J. Vac. Sci. Technol. B 15, 2864–2867 (1997).
[CrossRef]

H. Kikuta, Y. Ohira, K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997).
[CrossRef] [PubMed]

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[CrossRef]

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Subwavelength, binary lenses at infrared wavelengths,” J. Vac. Sci. Technol. B 15, 2946–2949 (1997).
[CrossRef]

S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14, 629–639 (1997).
[CrossRef]

1995 (2)

M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
[CrossRef]

E. B. Grann, M. G. Moharam, D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Vac. Sci. Technol. B 12, 333–339 (1995).

1993 (1)

1992 (1)

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

1991 (1)

1989 (1)

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28(2), 120–125 (1989).

1983 (2)

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983).
[CrossRef] [PubMed]

1960 (1)

Bird, G. R.

Case, S. K.

Chenault, D. B.

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28(2), 120–125 (1989).

Chipman, R. A.

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28(2), 120–125 (1989).

Chou, S. Y.

S. Y. Chou, S. J. Schablitsky, L. Zhuang, “Application of amorphous silicon gratings in polarization switching vertical-cavity surface-emitting lasers,” J. Vac. Sci. Technol. B 15, 2864–2867 (1997).
[CrossRef]

Craighead, H. G.

Deguzman, P. C.

G. P. Nordin, P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5, 163–168 (1999), http://www.opticsexpress.org .
[CrossRef]

G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
[CrossRef]

P. C. Deguzman, “Stacked subwavelength gratings for imaging polarimetry,” Ph.D. dissertation (University of Alabama in Huntsville, Huntsville, Ala., 2000).

G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Diffractive optical element for Stokes vector measurement with a focal plane array,” in Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 169–177 (1999).

Enger, R. C.

Erdogan, T.

Flanders, D. C.

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

Gaylord, T. K.

Gogolides, E.

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[CrossRef]

Goldstein, D. H.

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28(2), 120–125 (1989).

Grann, E. B.

E. B. Grann, M. G. Moharam, D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Vac. Sci. Technol. B 12, 333–339 (1995).

M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
[CrossRef]

Grigoropoulos, S.

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[CrossRef]

Haidner, H.

Iwata, K.

Jones, M. W.

G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
[CrossRef]

G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Diffractive optical element for Stokes vector measurement with a focal plane array,” in Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 169–177 (1999).

Kikuta, H.

Kipfer, P.

Lopez, A. G.

Magnusson, R.

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

Meier, J. T.

G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
[CrossRef]

G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Diffractive optical element for Stokes vector measurement with a focal plane array,” in Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 169–177 (1999).

Moharam, M. G.

E. B. Grann, M. G. Moharam, D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Vac. Sci. Technol. B 12, 333–339 (1995).

M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
[CrossRef]

Morris, G. M.

Nassiopoulos, A. G.

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[CrossRef]

Nordin, G. P.

G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
[CrossRef]

G. P. Nordin, P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5, 163–168 (1999), http://www.opticsexpress.org .
[CrossRef]

G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Diffractive optical element for Stokes vector measurement with a focal plane array,” in Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 169–177 (1999).

Norton, S. M.

Ohira, Y.

Parrish, M.

Pommet, D. A.

M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
[CrossRef]

E. B. Grann, M. G. Moharam, D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Vac. Sci. Technol. B 12, 333–339 (1995).

Raguin, D. H.

Schablitsky, S. J.

S. Y. Chou, S. J. Schablitsky, L. Zhuang, “Application of amorphous silicon gratings in polarization switching vertical-cavity surface-emitting lasers,” J. Vac. Sci. Technol. B 15, 2864–2867 (1997).
[CrossRef]

Smith, R. E.

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Subwavelength, binary lenses at infrared wavelengths,” J. Vac. Sci. Technol. B 15, 2946–2949 (1997).
[CrossRef]

Stork, W.

Streibl, N.

Tserepi, A. D.

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[CrossRef]

Van Zant, P.

P. Van Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing, 3rd ed. (McGraw-Hill, New York, 1997), p. 306.

Vawter, G. A.

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Subwavelength, binary lenses at infrared wavelengths,” J. Vac. Sci. Technol. B 15, 2946–2949 (1997).
[CrossRef]

Wang, S. S.

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

Warren, M. E.

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Subwavelength, binary lenses at infrared wavelengths,” J. Vac. Sci. Technol. B 15, 2946–2949 (1997).
[CrossRef]

Wendt, J. R.

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Subwavelength, binary lenses at infrared wavelengths,” J. Vac. Sci. Technol. B 15, 2946–2949 (1997).
[CrossRef]

Wolfe, W. L.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (Infrared Information Analysis Center, Environmental Research Institute of Michigan, Ann Arbor, Mich., 1985), pp. 7–76.

Zhuang, L.

S. Y. Chou, S. J. Schablitsky, L. Zhuang, “Application of amorphous silicon gratings in polarization switching vertical-cavity surface-emitting lasers,” J. Vac. Sci. Technol. B 15, 2864–2867 (1997).
[CrossRef]

Zissis, G. J.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (Infrared Information Analysis Center, Environmental Research Institute of Michigan, Ann Arbor, Mich., 1985), pp. 7–76.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Vac. Sci. Technol. B (4)

E. B. Grann, M. G. Moharam, D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Vac. Sci. Technol. B 12, 333–339 (1995).

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Subwavelength, binary lenses at infrared wavelengths,” J. Vac. Sci. Technol. B 15, 2946–2949 (1997).
[CrossRef]

S. Grigoropoulos, E. Gogolides, A. D. Tserepi, A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B 15, 640–645 (1997).
[CrossRef]

S. Y. Chou, S. J. Schablitsky, L. Zhuang, “Application of amorphous silicon gratings in polarization switching vertical-cavity surface-emitting lasers,” J. Vac. Sci. Technol. B 15, 2864–2867 (1997).
[CrossRef]

Opt. Eng. (1)

D. H. Goldstein, R. A. Chipman, D. B. Chenault, “Infrared spectropolarimetry,” Opt. Eng. 28(2), 120–125 (1989).

Opt. Express (1)

Opt. Lett. (2)

Other (4)

G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Diffractive optical element for Stokes vector measurement with a focal plane array,” in Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 169–177 (1999).

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (Infrared Information Analysis Center, Environmental Research Institute of Michigan, Ann Arbor, Mich., 1985), pp. 7–76.

P. Van Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing, 3rd ed. (McGraw-Hill, New York, 1997), p. 306.

P. C. Deguzman, “Stacked subwavelength gratings for imaging polarimetry,” Ph.D. dissertation (University of Alabama in Huntsville, Huntsville, Ala., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of a form-birefringent wave plate implemented as a subwavelength surface relief grating. Orientations of the TE and TM electric field vectors are shown for a normally incident beam.

Fig. 2
Fig. 2

RCWA simulation results for phase retardation normalized by π for a Si QWP (Λ = 1.0 µm, d = 2.15 µm) in an ambient medium of SU-8 as a function of wavelength parameterized by the grating fill factor (a/Λ).

Fig. 3
Fig. 3

SEM cross-sectional image of (a) etched Si grating and (b) grating planarized with SU-8.

Fig. 4
Fig. 4

(a) Measured and simulated retardance as a function of wavelength and (b) corresponding TE and TM transmittances.

Fig. 5
Fig. 5

SEM cross-sectional image of a wire grid polarizer sample.

Fig. 6
Fig. 6

Transmittance measurements of TM and TE illumination through the polarizer in Fig. 5 with corresponding RCWA results. The dip in the center of the measured TM curve is due to CO2 absorption in the FTIR.

Fig. 7
Fig. 7

SEM cross-sectional image of the stack 1 circular polarizer. See text for details.

Fig. 8
Fig. 8

Schematic illustration of circular polarization filter test geometry in the FTIR spectrometer.

Fig. 9
Fig. 9

Measured transmittance of the stack 1 sample with broadband ARC for normally incident LCP and RCP illumination.

Fig. 10
Fig. 10

SEM cross-sectional image of a stack 2 circular polarizer. See text for details.

Fig. 11
Fig. 11

Measured transmittance of stack 2 illuminated from the polarizer side of the sample for linearly polarized TE and TM illumination.

Fig. 12
Fig. 12

Measured transmittance of stack 2 sample illuminated through the back side of the sample with LCP and RCP light.

Tables (1)

Tables Icon

Table 1 RCWA Parameters for a Si Grating with SU-8 Filling the Grooves and a 1.1-µm-Thick Homogeneous SU-8 Film on Topa

Metrics