Abstract

MoRu–Be multilayer coatings were applied to two diffraction gratings for the purpose of enhancing their normal-incidence efficiency in the 11.1–12.0-nm wavelength range. The grating substrates were replicas of a holographic master grating that had a blazed groove profile with 2400 grooves/mm and a 2-m radius of curvature. The relatively low average microroughness (0.8 nm) of the grating surfaces contributed to the relatively high groove efficiency of the grating substrates and the reflectance of the MoRu–Be multilayer coatings. The peak efficiency, measured with synchrotron radiation, was 10.4% in the second diffraction order at a wavelength of 11.37 nm.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Ely, K. G. Stilt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Manioc mounts,” Appl. Opt. 34, 7347–7354 (1995).
  2. J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).
  3. U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
    [CrossRef]
  4. P. B. Mirkarimi, S. Bajt, M. A. Wall, “Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography,” Appl. Opt. 39, 1617–1625 (2000).
  5. J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
  6. J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600 line/mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
  7. C. Montcalm, S. Bajt, J. F. Seely, “MoRu–Be multilayer-coated grating with 10.4% normal-incidence efficiency near the 11.4-nm wavelength,” Opt. Lett. 26, 125–127 (2001).
  8. L. I. Goray, “Numerical analysis for relief gratings working in the soft x-ray and XUV region by the integral equation method,” in X-Ray and UV Detectors, R. B. Hoover, M. W. Tate, eds., Proc. SPIE2278, 168–172 (1994).
    [CrossRef]
  9. L. I. Goray, B. C. Chernov, “Comparison of rigorous methods for x-ray and XUV grating diffraction analysis,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE2515, 240–245 (1995).
    [CrossRef]
  10. J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Thin-film interference effects on the efficiency of a normal-incidence grating in the 100–350-Å wavelength region,” Appl. Opt. 38, 1251–1258 (1999).
  11. S. Bajt, “Molybdenum-ruthenium/beryllium multilayer coatings,” J. Vac. Sci. Technol. A 18, 557–559 (2000).
    [CrossRef]
  12. J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
  13. W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
    [CrossRef]
  14. D. L. Windt, “IMD: software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998). A copy of the software can be downloaded at http://cletus.phys.columbia.edu/∼windt/imd/ .
  15. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). Updated optical constants were obtained at http://www-cxro.lbl.gov/optical_constants/ .
  16. E. T. Arakawa, T. A. Callcott, Y. C. Chang, “Beryllium (Be),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 421–433.
  17. D. W. Lynch, W. R. Hunter, “Molybdenum (Mo),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 303–313.
  18. D. W. Lynch, W. R. Hunter, “Ruthenium (Ru),” in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, New York, 1998), pp. 253–261.
  19. A tabulation of measured normal incidence reflectances can be found at the Center for X-Ray Optics Internet site, http://www-cxro.lbl.gov/multilayer/survey.html .
  20. R. Tousey, J.-D. Bartoe, G. E. Brueckner, J. D. Purcell, “Extreme ultraviolet spectroheliograph ATM experiment SO82A,” Appl. Opt. 16, 870–878 (1977).
  21. U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170 to 625 Å (E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., 1987).
  22. C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme-ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
    [CrossRef]
  23. A. K. Dupree, N. S. Brickhouse, G. J. Hanson, in Astrophysics in the EUV, International Astronomical Union Colloquium152, S. Bowyer, R. Malina, eds. (Kluwer, Dordrecht, The Netherlands, 1996), p. 141.

2001 (1)

2000 (2)

1999 (1)

1998 (1)

D. L. Windt, “IMD: software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998). A copy of the software can be downloaded at http://cletus.phys.columbia.edu/∼windt/imd/ .

1997 (2)

C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme-ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
[CrossRef]

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).

1995 (2)

1993 (2)

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). Updated optical constants were obtained at http://www-cxro.lbl.gov/optical_constants/ .

1992 (1)

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

1989 (1)

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).

1986 (1)

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
[CrossRef]

1977 (1)

Arakawa, E. T.

E. T. Arakawa, T. A. Callcott, Y. C. Chang, “Beryllium (Be),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 421–433.

Bajt, S.

Barbee, T. W.

Bartoe, J.-D.

Boyer, C. N.

Brickhouse, N. S.

A. K. Dupree, N. S. Brickhouse, G. J. Hanson, in Astrophysics in the EUV, International Astronomical Union Colloquium152, S. Bowyer, R. Malina, eds. (Kluwer, Dordrecht, The Netherlands, 1996), p. 141.

Brown, C. M.

Brueckner, G. E.

Callcott, T. A.

E. T. Arakawa, T. A. Callcott, Y. C. Chang, “Beryllium (Be),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 421–433.

Chang, Y. C.

E. T. Arakawa, T. A. Callcott, Y. C. Chang, “Beryllium (Be),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 421–433.

Chernov, B. C.

L. I. Goray, B. C. Chernov, “Comparison of rigorous methods for x-ray and XUV grating diffraction analysis,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE2515, 240–245 (1995).
[CrossRef]

Cruddace, R. G.

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). Updated optical constants were obtained at http://www-cxro.lbl.gov/optical_constants/ .

Dohne, B.

U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170 to 625 Å (E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., 1987).

Doschek, G. A.

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

Dupree, A. K.

A. K. Dupree, N. S. Brickhouse, G. J. Hanson, in Astrophysics in the EUV, International Astronomical Union Colloquium152, S. Bowyer, R. Malina, eds. (Kluwer, Dordrecht, The Netherlands, 1996), p. 141.

Ely, R.

Feldman, U.

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170 to 625 Å (E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., 1987).

Goray, L. I.

J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Thin-film interference effects on the efficiency of a normal-incidence grating in the 100–350-Å wavelength region,” Appl. Opt. 38, 1251–1258 (1999).

L. I. Goray, “Numerical analysis for relief gratings working in the soft x-ray and XUV region by the integral equation method,” in X-Ray and UV Detectors, R. B. Hoover, M. W. Tate, eds., Proc. SPIE2278, 168–172 (1994).
[CrossRef]

L. I. Goray, B. C. Chernov, “Comparison of rigorous methods for x-ray and XUV grating diffraction analysis,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE2515, 240–245 (1995).
[CrossRef]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). Updated optical constants were obtained at http://www-cxro.lbl.gov/optical_constants/ .

Gursky, H.

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

Hanson, G. J.

A. K. Dupree, N. S. Brickhouse, G. J. Hanson, in Astrophysics in the EUV, International Astronomical Union Colloquium152, S. Bowyer, R. Malina, eds. (Kluwer, Dordrecht, The Netherlands, 1996), p. 141.

Heidemann, K. F.

Heinzmann, U.

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). Updated optical constants were obtained at http://www-cxro.lbl.gov/optical_constants/ .

Holland, G. E.

Hunter, W. R.

J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Thin-film interference effects on the efficiency of a normal-incidence grating in the 100–350-Å wavelength region,” Appl. Opt. 38, 1251–1258 (1999).

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600 line/mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Ely, K. G. Stilt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Manioc mounts,” Appl. Opt. 34, 7347–7354 (1995).

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
[CrossRef]

D. W. Lynch, W. R. Hunter, “Ruthenium (Ru),” in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, New York, 1998), pp. 253–261.

D. W. Lynch, W. R. Hunter, “Molybdenum (Mo),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 303–313.

Kleineberg, U.

Kowalski, M. P.

Lynch, D. W.

D. W. Lynch, W. R. Hunter, “Ruthenium (Ru),” in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, New York, 1998), pp. 253–261.

D. W. Lynch, W. R. Hunter, “Molybdenum (Mo),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 303–313.

Mandelbaum, P.

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

Menke, D.

Mirkarimi, P. B.

Montcalm, C.

C. Montcalm, S. Bajt, J. F. Seely, “MoRu–Be multilayer-coated grating with 10.4% normal-incidence efficiency near the 11.4-nm wavelength,” Opt. Lett. 26, 125–127 (2001).

C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme-ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
[CrossRef]

Osterried, K.

Pépin, H.

C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme-ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
[CrossRef]

Purcell, J. D.

R. Tousey, J.-D. Bartoe, G. E. Brueckner, J. D. Purcell, “Extreme ultraviolet spectroheliograph ATM experiment SO82A,” Appl. Opt. 16, 870–878 (1977).

U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170 to 625 Å (E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., 1987).

Ranger, M.

C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme-ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
[CrossRef]

Rife, J. C.

J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Thin-film interference effects on the efficiency of a normal-incidence grating in the 100–350-Å wavelength region,” Appl. Opt. 38, 1251–1258 (1999).

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Ely, K. G. Stilt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Manioc mounts,” Appl. Opt. 34, 7347–7354 (1995).

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600 line/mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
[CrossRef]

Sadeghi, H. R.

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).

Seely, J. F.

C. Montcalm, S. Bajt, J. F. Seely, “MoRu–Be multilayer-coated grating with 10.4% normal-incidence efficiency near the 11.4-nm wavelength,” Opt. Lett. 26, 125–127 (2001).

J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Thin-film interference effects on the efficiency of a normal-incidence grating in the 100–350-Å wavelength region,” Appl. Opt. 38, 1251–1258 (1999).

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600 line/mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Ely, K. G. Stilt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Manioc mounts,” Appl. Opt. 34, 7347–7354 (1995).

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

Stilt, K. G.

Sullivan, B. T.

C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme-ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
[CrossRef]

Tousey, R.

Wall, M. A.

Windt, D. L.

D. L. Windt, “IMD: software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998). A copy of the software can be downloaded at http://cletus.phys.columbia.edu/∼windt/imd/ .

Appl. Opt. (7)

P. B. Mirkarimi, S. Bajt, M. A. Wall, “Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography,” Appl. Opt. 39, 1617–1625 (2000).

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength region and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600 line/mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Ely, K. G. Stilt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Manioc mounts,” Appl. Opt. 34, 7347–7354 (1995).

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).

J. F. Seely, L. I. Goray, W. R. Hunter, J. C. Rife, “Thin-film interference effects on the efficiency of a normal-incidence grating in the 100–350-Å wavelength region,” Appl. Opt. 38, 1251–1258 (1999).

R. Tousey, J.-D. Bartoe, G. E. Brueckner, J. D. Purcell, “Extreme ultraviolet spectroheliograph ATM experiment SO82A,” Appl. Opt. 16, 870–878 (1977).

Astrophys. J. Suppl. (1)

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme-ultraviolet observations,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). Updated optical constants were obtained at http://www-cxro.lbl.gov/optical_constants/ .

Comput. Phys. (1)

D. L. Windt, “IMD: software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998). A copy of the software can be downloaded at http://cletus.phys.columbia.edu/∼windt/imd/ .

J. Vac. Sci. Technol. A (2)

S. Bajt, “Molybdenum-ruthenium/beryllium multilayer coatings,” J. Vac. Sci. Technol. A 18, 557–559 (2000).
[CrossRef]

C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme-ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
[CrossRef]

Nucl. Instrum. Methods A (1)

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods A 246, 465–468 (1986).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).

Other (8)

L. I. Goray, “Numerical analysis for relief gratings working in the soft x-ray and XUV region by the integral equation method,” in X-Ray and UV Detectors, R. B. Hoover, M. W. Tate, eds., Proc. SPIE2278, 168–172 (1994).
[CrossRef]

L. I. Goray, B. C. Chernov, “Comparison of rigorous methods for x-ray and XUV grating diffraction analysis,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE2515, 240–245 (1995).
[CrossRef]

U. Feldman, J. D. Purcell, B. Dohne, An Atlas of Extreme Ultraviolet Spectroheliograms from 170 to 625 Å (E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., 1987).

E. T. Arakawa, T. A. Callcott, Y. C. Chang, “Beryllium (Be),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, New York, 1991), pp. 421–433.

D. W. Lynch, W. R. Hunter, “Molybdenum (Mo),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 303–313.

D. W. Lynch, W. R. Hunter, “Ruthenium (Ru),” in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, New York, 1998), pp. 253–261.

A tabulation of measured normal incidence reflectances can be found at the Center for X-Ray Optics Internet site, http://www-cxro.lbl.gov/multilayer/survey.html .

A. K. Dupree, N. S. Brickhouse, G. J. Hanson, in Astrophysics in the EUV, International Astronomical Union Colloquium152, S. Bowyer, R. Malina, eds. (Kluwer, Dordrecht, The Netherlands, 1996), p. 141.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

AFM images of grating 2 (a) before and (b) after application of the MoRu–Be multilayer coating.

Fig. 2
Fig. 2

Lineouts across the grooves of grating 2 (a) before and (b) after application of the MoRu–Be multilayer coating.

Fig. 3
Fig. 3

(a) Measured (squares) and the calculated (dashed curve) reflectances of a test flat mirror with 20 MoRu–Be bilayers at an angle of incidence of 10°. (b) The zero-order efficiency of grating 1 measured at an angle of 13.9° (linked squares). Also shown is the predicted reflectance (dashed curve) of the multilayer coating with 50 MoRu–Be bilayers. The measured zero-order efficiency is a factor of 10 lower than the reflectance.

Fig. 4
Fig. 4

(a) Solid and dashed curves are the measured zero-order efficiencies of multilayer gratings 1 and 2, respectively, at angles of incidence of 13.9°. (b) Solid and dashed curves are the calculated reflectances of the MoRu–Be multilayer coatings on grating 1 (Λ = 6.03 nm) and grating 2 (Λ = 6.11 nm), respectively. The angle of incidence is 13.9°, and the number of MoRu–Be bilayers is 50.

Fig. 5
Fig. 5

Efficiency of multilayer grating 2 measured at an angle of incidence of 13.9° and for an incident wavelength of 11.59 nm. The inside orders (positive order numbers) and the outside orders (negative order numbers) are identified.

Fig. 6
Fig. 6

Measured efficiencies of (a) grating 1 at a wavelength of 11.37 nm and (b) grating 2 at 11.48 nm. The angle of incidence was 13.9°.

Fig. 7
Fig. 7

Peak efficiencies measured at an angle of incidence of 13.9° for (a) grating 1 and (b) grating 2. (c) The calculated efficiencies at an angle of incidence of 13.9°.

Fig. 8
Fig. 8

Measured efficiencies of (a) grating 1 and (b) grating 2 at an angle of incidence of 13.9° and an incident wavelength of 49.6 nm.

Fig. 9
Fig. 9

Peak efficiencies measured at an angle of incidence of 13.9° of (a) grating 1 and (b) grating 2 as functions of wavelength. The large data points were derived from the detector scans at the three wavelengths 26.4, 35.4, and 49.6 nm. The dashed curves for the ±1 orders are fits to the large data points. The solid curves with small data points are the zero-order efficiencies measured for wavelength scans over the 25.0–49.6-nm range. (c) The efficiencies calculated at an angle of incidence of 13.9°.

Fig. 10
Fig. 10

(a) Analytical groove profile with height 6.2 nm. The left-hand side (xx 0) of the profile is represented by the function f(x) shown in Eq. (2) and the right-hand side (x > x 0) by the scaled sin(x) function. (b) The same groove profile but with a superimposed random microroughness having a standard deviation of 0.7 nm.

Fig. 11
Fig. 11

Calculated groove efficiencies for (a) the outside orders and (b) the inside orders for an angle of incidence of 13.9°.

Fig. 12
Fig. 12

Curves are the calculated groove efficiencies. The two data points at a wavelength of 40 nm are the measured groove efficiencies in the zero order and the ±1 orders.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Rq=(z12+z22+z32+···+zN2)N1/2.
fx=0xsin tn dt

Metrics