Abstract

We consider the scattering of light by single wood fibers both theoretically and experimentally. We describe the size and the shape distributions and the internal structure and chemical composition of the wood fibers. We have modeled the random shape of the hollow, cylindrical wood fiber by using multivariate lognormal statistics. We have computed wood-fiber absorption and scattering cross sections, asymmetry parameters, and scattering phase matrices in the ray-optics approximation. Finally, we have provided experimental results from angular scattering measurements for wood fibers and present what we believe is the first comparison between these measurements and ray-optics computations for Gaussian random wood-fiber models. In spite of the complicated internal structure of the wood fiber, our model together with the ray-optics treatment explains the scattering measurements surprisingly well.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription