Abstract

We investigate the transmission characteristics of perfectly conducting two-dimensional wire grid polarizers fabricated in finite and infinite apertures using a rigorous spectral-domain mode-matching method. Specifically, the transmission coefficient for both transverse-electric and transverse-magnetic polarizations, extinction ratio, and diffraction pattern are characterized for a wide variety of geometric and material parameters including aperture dimension, conducting wire fill factor, wire spacing, polarizer thickness, material dielectric constants, and incident wave arrival angle. The results indicate that the transmission behavior is largely insensitive to aperture dimension.

© 2001 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Bird, M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886–891 (1960).
    [CrossRef]
  2. J. B. Young, H. A. Graham, E. W. Peterson, “Wire grid infrared polarizer,” Appl. Opt. 4, 1023–1026 (1965).
    [CrossRef]
  3. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  4. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  5. E. Chen, S. Y. Chou, “A novel device for detecting the polarization direction of linear polarized light using integrated subwavelength gratings and photodetectors,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1997).
    [CrossRef]
  6. J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
    [CrossRef]
  7. G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1184–1193 (1999).
    [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Tarrytown, N.Y., 1975).
  9. K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997).
    [CrossRef]
  10. D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).
    [CrossRef]
  11. D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).
    [CrossRef]
  12. A. Wang, A. Prata, “Lenslet analysis by rigorous vector diffraction theory,” J. Opt. Soc. Am. A 12, 1161–1169 (1995).
    [CrossRef]
  13. M. Schmitz, O. Bryngdahl, “Rigorous concept for the design of diffractive microlenses with high numerical apertures,” J. Opt. Soc. Am. A 14, 901–906 (1997).
    [CrossRef]
  14. M. A. Jensen, G. P. Nordin, “Finite-aperture wire grid polarizers,” J. Opt. Soc. Am. A 17, 2191–2198 (2000).
    [CrossRef]
  15. Y. S. Kim, H. J. Eom, J. W. Lee, K. Yoshitomi, “Scattering from multiple slits in a thick conducting plane,” Radio Sci. 30, 1341–1347 (1995).
    [CrossRef]
  16. O. M. Mendez, M. Cahilhac, R. Petit, “Diffraction of a two-dimensional electromagnetic beam wave by a thick slit pierced in a perfectly conducting screen,” J. Opt. Soc. Am. 73, 328–331 (1983).
    [CrossRef]
  17. S. H. Kang, H. J. Eom, T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).
    [CrossRef]
  18. T. J. Park, S. H. Kang, H. J. Eom, “TE-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Antennas Propag. 42, 112–114 (1994).
    [CrossRef]
  19. Y.-K. Kok, “General solution to the multiple-metallic-grooves scattering problem: the fast-polarization case,” Appl. Opt. 32, 2573–2581 (1993).
    [CrossRef] [PubMed]
  20. B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, R. Morf, “Grid polarizer for the visible spectral region,” in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 288–296 (1994).
  21. H. Lochbihler, R. Depine, “Diffraction from highly conducting wire gratings of arbitrary cross-section,” J. Mod. Opt. 40, 1273–1298 (1993).
    [CrossRef]

2000 (1)

1999 (1)

1998 (1)

1997 (5)

1995 (3)

1994 (1)

T. J. Park, S. H. Kang, H. J. Eom, “TE-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Antennas Propag. 42, 112–114 (1994).
[CrossRef]

1993 (3)

H. Lochbihler, R. Depine, “Diffraction from highly conducting wire gratings of arbitrary cross-section,” J. Mod. Opt. 40, 1273–1298 (1993).
[CrossRef]

Y.-K. Kok, “General solution to the multiple-metallic-grooves scattering problem: the fast-polarization case,” Appl. Opt. 32, 2573–2581 (1993).
[CrossRef] [PubMed]

S. H. Kang, H. J. Eom, T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).
[CrossRef]

1986 (1)

1983 (1)

1965 (1)

1960 (1)

Abraham, M.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, R. Morf, “Grid polarizer for the visible spectral region,” in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 288–296 (1994).

Bird, G. R.

Born, M.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Tarrytown, N.Y., 1975).

Brady, D. J.

J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

Bryngdahl, O.

Cahilhac, M.

Chen, E.

E. Chen, S. Y. Chou, “A novel device for detecting the polarization direction of linear polarized light using integrated subwavelength gratings and photodetectors,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1997).
[CrossRef]

Chou, S. Y.

E. Chen, S. Y. Chou, “A novel device for detecting the polarization direction of linear polarized light using integrated subwavelength gratings and photodetectors,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1997).
[CrossRef]

Collins, J. P.

Deguzman, P. C.

Depine, R.

H. Lochbihler, R. Depine, “Diffraction from highly conducting wire gratings of arbitrary cross-section,” J. Mod. Opt. 40, 1273–1298 (1993).
[CrossRef]

Ehrfeld, W.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, R. Morf, “Grid polarizer for the visible spectral region,” in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 288–296 (1994).

Eom, H. J.

Y. S. Kim, H. J. Eom, J. W. Lee, K. Yoshitomi, “Scattering from multiple slits in a thick conducting plane,” Radio Sci. 30, 1341–1347 (1995).
[CrossRef]

T. J. Park, S. H. Kang, H. J. Eom, “TE-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Antennas Propag. 42, 112–114 (1994).
[CrossRef]

S. H. Kang, H. J. Eom, T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).
[CrossRef]

Gale, M. T.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, R. Morf, “Grid polarizer for the visible spectral region,” in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 288–296 (1994).

Gaylord, T. K.

Glytsis, E. N.

Graham, H. A.

Grann, E. B.

Guo, J.

J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

Hintermaier, M.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, R. Morf, “Grid polarizer for the visible spectral region,” in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 288–296 (1994).

Hirayama, K.

Jensen, M. A.

Jones, M. W.

Kang, S. H.

T. J. Park, S. H. Kang, H. J. Eom, “TE-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Antennas Propag. 42, 112–114 (1994).
[CrossRef]

S. H. Kang, H. J. Eom, T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).
[CrossRef]

Kim, Y. S.

Y. S. Kim, H. J. Eom, J. W. Lee, K. Yoshitomi, “Scattering from multiple slits in a thick conducting plane,” Radio Sci. 30, 1341–1347 (1995).
[CrossRef]

Knapek, E.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, R. Morf, “Grid polarizer for the visible spectral region,” in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 288–296 (1994).

Kok, Y.-K.

Lee, J. W.

Y. S. Kim, H. J. Eom, J. W. Lee, K. Yoshitomi, “Scattering from multiple slits in a thick conducting plane,” Radio Sci. 30, 1341–1347 (1995).
[CrossRef]

Lochbihler, H.

H. Lochbihler, R. Depine, “Diffraction from highly conducting wire gratings of arbitrary cross-section,” J. Mod. Opt. 40, 1273–1298 (1993).
[CrossRef]

Mait, J. N.

Meier, J. T.

Mendez, O. M.

Mirotznik, M. S.

Moharam, M. G.

Morf, R.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, R. Morf, “Grid polarizer for the visible spectral region,” in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 288–296 (1994).

Nordin, G. P.

Park, T. J.

T. J. Park, S. H. Kang, H. J. Eom, “TE-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Antennas Propag. 42, 112–114 (1994).
[CrossRef]

S. H. Kang, H. J. Eom, T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).
[CrossRef]

Parrish, M.

Peterson, E. W.

Petit, R.

Pommet, D. A.

Prata, A.

Prather, D. W.

Schmitz, M.

Stenkamp, B.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, R. Morf, “Grid polarizer for the visible spectral region,” in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 288–296 (1994).

Wang, A.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Tarrytown, N.Y., 1975).

Yoshitomi, K.

Y. S. Kim, H. J. Eom, J. W. Lee, K. Yoshitomi, “Scattering from multiple slits in a thick conducting plane,” Radio Sci. 30, 1341–1347 (1995).
[CrossRef]

Young, J. B.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

E. Chen, S. Y. Chou, “A novel device for detecting the polarization direction of linear polarized light using integrated subwavelength gratings and photodetectors,” IEEE Photon. Technol. Lett. 9, 1259–1261 (1997).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

T. J. Park, S. H. Kang, H. J. Eom, “TE-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Antennas Propag. 42, 112–114 (1994).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. H. Kang, H. J. Eom, T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).
[CrossRef]

J. Mod. Opt. (1)

H. Lochbihler, R. Depine, “Diffraction from highly conducting wire gratings of arbitrary cross-section,” J. Mod. Opt. 40, 1273–1298 (1993).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (9)

M. A. Jensen, G. P. Nordin, “Finite-aperture wire grid polarizers,” J. Opt. Soc. Am. A 17, 2191–2198 (2000).
[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
[CrossRef]

A. Wang, A. Prata, “Lenslet analysis by rigorous vector diffraction theory,” J. Opt. Soc. Am. A 12, 1161–1169 (1995).
[CrossRef]

G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1184–1193 (1999).
[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).
[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).
[CrossRef]

M. Schmitz, O. Bryngdahl, “Rigorous concept for the design of diffractive microlenses with high numerical apertures,” J. Opt. Soc. Am. A 14, 901–906 (1997).
[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997).
[CrossRef]

M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
[CrossRef]

Opt. Eng. (1)

J. Guo, D. J. Brady, “Fabrication of high-resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

Radio Sci. (1)

Y. S. Kim, H. J. Eom, J. W. Lee, K. Yoshitomi, “Scattering from multiple slits in a thick conducting plane,” Radio Sci. 30, 1341–1347 (1995).
[CrossRef]

Other (2)

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Tarrytown, N.Y., 1975).

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, R. Morf, “Grid polarizer for the visible spectral region,” in Nanofabrication Technologies and Device Integration, W. Karthe, ed., Proc. SPIE2213, 288–296 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics