Abstract

Intra-arterial measurements of the velocity and the average flow of red-blood cells were investigated by means of a fiber-coupled laser Doppler velocimeter based on the self-mixing effect. The velocity of the red cells was calculated from the frequency of the signal that occurs when light, scattered back from a moving object in front of a fiber into a laser-diode cavity, interferes with the laser cavity’s proper mode. These fluctuations occur at the Doppler frequency. The signal was obtained from the photodiode that is present in the laser diode’s housing. Temperature control and stabilization of the diode cavity were introduced to reduce the light-intensity fluctuation that is due to mode hopping of the diode. The velocimeter was calibrated with a rotating disk covered with white paper (nonlinearity of 2.6% for velocities up to 0.4 m/s) and tested in vitro as a fluid velocimeter. The velocimeter was used in in vivo tests on the iliac artery of a 35-kg pig and on the arteria pulmonaris of a healthy calf. The optical fiber was placed in the iliac artery by a basket catheter 4 cm proximal to the bifurcation of the femoral artery. The average arterial blood flow velocity of the red cells were measured upstream and downstream. A special cleaving procedure for the fiber tip in downstream measurement is reported. Blood-velocity measurement is compared with values generated by an ultrasound flowmeter, and a difference of less than 9% is found.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer–oscillator,” J. Phys. E 1, 723–726 (1968).
    [CrossRef]
  2. J. H. Churnside, “Signal-to-noise in a backscattered-modulated Doppler velocimeter,” Appl. Opt. 23, 2097–2106 (1984).
    [CrossRef]
  3. S. Shinohara, A. Mochizuki, H. Yoshida, M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25, 1417–1419 (1986).
    [CrossRef] [PubMed]
  4. H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
    [CrossRef] [PubMed]
  5. P. J. de Groot, G. M. Gallatin, “Backscattered-modulation velocimetry with an external cavity laser diode,” Opt. Lett. 14, 165–167 (1989).
    [CrossRef] [PubMed]
  6. L. Scalise, F. F. de Mul, W. Steenbergen, A. Petoukhova, “Recent advances in self-mixing laser Doppler velocimetry: use as an in-vivo blood flow meter,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, eds., Proc. SPIE3911, 95–105 (2000).
  7. M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
    [CrossRef] [PubMed]
  8. L. E. Drain, The Laser Doppler Technique (Wiley, Chichester, UK, 1980).
  9. M. D. Stern, “Catheter velocimeters,” in Laser Doppler Blood Flowmetry, A. P. Shepherd, P. A. Oberg, eds. (Kluwer, Dordrecht, The Netherlands, 1990), pp. 121–151.
  10. F. F. M. de Mul, M. Van Herwijnen, P. Moes, J. Greve, “Signal optimization in glass-fiber self-mixing intra-arterial laser Doppler velocimetry,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, B. J. Tromberg, eds., Proc. SPIE2678, 372–381 (1996).
    [CrossRef]
  11. M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaf, A. C. M. Dassel, J. G. Aarnoudse, “In-vivo blood flow velocity measurement using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. SPIE1511, 120–128 (1991).
  12. K. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Fiber-coupled self-mixing diode laser Doppler velocimetry: technical aspects and flow velocity profile disturbance in water and blood flow,” Appl. Opt. 33, 5628–5641 (1994).
    [CrossRef] [PubMed]

1994

1992

1989

1988

1986

1984

1968

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer–oscillator,” J. Phys. E 1, 723–726 (1968).
[CrossRef]

Aarnoudse, J. G.

Churnside, J. H.

Dassel, A. C. M.

de Groot, P. J.

de Mul, F. F.

L. Scalise, F. F. de Mul, W. Steenbergen, A. Petoukhova, “Recent advances in self-mixing laser Doppler velocimetry: use as an in-vivo blood flow meter,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, eds., Proc. SPIE3911, 95–105 (2000).

de Mul, F. F. M.

K. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Fiber-coupled self-mixing diode laser Doppler velocimetry: technical aspects and flow velocity profile disturbance in water and blood flow,” Appl. Opt. 33, 5628–5641 (1994).
[CrossRef] [PubMed]

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
[CrossRef] [PubMed]

F. F. M. de Mul, M. Van Herwijnen, P. Moes, J. Greve, “Signal optimization in glass-fiber self-mixing intra-arterial laser Doppler velocimetry,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, B. J. Tromberg, eds., Proc. SPIE2678, 372–381 (1996).
[CrossRef]

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaf, A. C. M. Dassel, J. G. Aarnoudse, “In-vivo blood flow velocity measurement using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. SPIE1511, 120–128 (1991).

Drain, L. E.

L. E. Drain, The Laser Doppler Technique (Wiley, Chichester, UK, 1980).

Gallatin, G. M.

Graaf, R.

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaf, A. C. M. Dassel, J. G. Aarnoudse, “In-vivo blood flow velocity measurement using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. SPIE1511, 120–128 (1991).

Graaff, R.

Greve, J.

K. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Fiber-coupled self-mixing diode laser Doppler velocimetry: technical aspects and flow velocity profile disturbance in water and blood flow,” Appl. Opt. 33, 5628–5641 (1994).
[CrossRef] [PubMed]

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

H. W. Jentink, F. F. M. de Mul, H. E. Suichies, J. G. Aarnoudse, J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988).
[CrossRef] [PubMed]

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaf, A. C. M. Dassel, J. G. Aarnoudse, “In-vivo blood flow velocity measurement using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. SPIE1511, 120–128 (1991).

F. F. M. de Mul, M. Van Herwijnen, P. Moes, J. Greve, “Signal optimization in glass-fiber self-mixing intra-arterial laser Doppler velocimetry,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, B. J. Tromberg, eds., Proc. SPIE2678, 372–381 (1996).
[CrossRef]

Jentink, H. W.

Koelink, K.

Koelink, M. K.

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaf, A. C. M. Dassel, J. G. Aarnoudse, “In-vivo blood flow velocity measurement using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. SPIE1511, 120–128 (1991).

Mochizuki, A.

Moes, P.

F. F. M. de Mul, M. Van Herwijnen, P. Moes, J. Greve, “Signal optimization in glass-fiber self-mixing intra-arterial laser Doppler velocimetry,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, B. J. Tromberg, eds., Proc. SPIE2678, 372–381 (1996).
[CrossRef]

Petoukhova, A.

L. Scalise, F. F. de Mul, W. Steenbergen, A. Petoukhova, “Recent advances in self-mixing laser Doppler velocimetry: use as an in-vivo blood flow meter,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, eds., Proc. SPIE3911, 95–105 (2000).

Rudd, M. J.

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer–oscillator,” J. Phys. E 1, 723–726 (1968).
[CrossRef]

Scalise, L.

L. Scalise, F. F. de Mul, W. Steenbergen, A. Petoukhova, “Recent advances in self-mixing laser Doppler velocimetry: use as an in-vivo blood flow meter,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, eds., Proc. SPIE3911, 95–105 (2000).

Shinohara, S.

Slot, M.

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992).
[CrossRef] [PubMed]

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaf, A. C. M. Dassel, J. G. Aarnoudse, “In-vivo blood flow velocity measurement using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. SPIE1511, 120–128 (1991).

Steenbergen, W.

L. Scalise, F. F. de Mul, W. Steenbergen, A. Petoukhova, “Recent advances in self-mixing laser Doppler velocimetry: use as an in-vivo blood flow meter,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, eds., Proc. SPIE3911, 95–105 (2000).

Stern, M. D.

M. D. Stern, “Catheter velocimeters,” in Laser Doppler Blood Flowmetry, A. P. Shepherd, P. A. Oberg, eds. (Kluwer, Dordrecht, The Netherlands, 1990), pp. 121–151.

Suichies, H. E.

Sumi, M.

Van Herwijnen, M.

F. F. M. de Mul, M. Van Herwijnen, P. Moes, J. Greve, “Signal optimization in glass-fiber self-mixing intra-arterial laser Doppler velocimetry,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, B. J. Tromberg, eds., Proc. SPIE2678, 372–381 (1996).
[CrossRef]

Weijers, A. L.

Yoshida, H.

Appl. Opt.

J. Phys. E

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer–oscillator,” J. Phys. E 1, 723–726 (1968).
[CrossRef]

Opt. Lett.

Other

L. Scalise, F. F. de Mul, W. Steenbergen, A. Petoukhova, “Recent advances in self-mixing laser Doppler velocimetry: use as an in-vivo blood flow meter,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, eds., Proc. SPIE3911, 95–105 (2000).

L. E. Drain, The Laser Doppler Technique (Wiley, Chichester, UK, 1980).

M. D. Stern, “Catheter velocimeters,” in Laser Doppler Blood Flowmetry, A. P. Shepherd, P. A. Oberg, eds. (Kluwer, Dordrecht, The Netherlands, 1990), pp. 121–151.

F. F. M. de Mul, M. Van Herwijnen, P. Moes, J. Greve, “Signal optimization in glass-fiber self-mixing intra-arterial laser Doppler velocimetry,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, B. J. Tromberg, eds., Proc. SPIE2678, 372–381 (1996).
[CrossRef]

M. K. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaf, A. C. M. Dassel, J. G. Aarnoudse, “In-vivo blood flow velocity measurement using the self-mixing effect in a fiber-coupled semiconductor laser,” in Fiber-Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. SPIE1511, 120–128 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of the setup for realization of the laser Doppler self-mixing velocimeter.

Fig. 2
Fig. 2

Self-mixing signal measured on a rotating wheel by use of an optical fiber (length, 1.5 m): (a) time domain, (b) frequency domain.

Fig. 3
Fig. 3

Mechanism for reduction of undesired feedback in the laser cavity.

Fig. 4
Fig. 4

Calibration line. Velocity ranges: (a) 0–0.4 m/s, (b) 0.4–0.8 m/s.

Fig. 5
Fig. 5

Comparison of experimental and theoretical values of Doppler frequency as a function of fiber direction relative to velocity direction (angle θ).

Fig. 6
Fig. 6

Experimental setup for measurement of the flow profile.

Fig. 7
Fig. 7

Calculated and measured normalized parabolic velocity profiles.

Fig. 8
Fig. 8

Basket catheter at the measurement position (iliac artery).

Fig. 9
Fig. 9

Basket catheter and the optical fiber.

Fig. 10
Fig. 10

Upstream frequency spectrum (flow condition) in the left part of the femoral artery of a healthy pig.

Fig. 11
Fig. 11

Difference of the spectra in flow and no-flow conditions). See Fig. 10. Lines are weighted fits.

Fig. 12
Fig. 12

Spectra measured with glass fiber inside and outside the catheter. See Fig. 10.

Fig. 13
Fig. 13

Difference of the spectra measured with the glass fiber inside and outside the catheter. See Figs. 10 and 11.

Fig. 14
Fig. 14

Blood velocity from flow measurements with the reference instrument (Transonic flowmeter) calculated for various diameters and blood velocities measured with the self-mixing laser Doppler velocimeter. See Fig. 10.

Fig. 15
Fig. 15

Doppler spectrum measurements in the arteria pulmonaris of a healthy calf for flow and absence of flow (fiber direction, downstream).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δf=2nvcos θ/λ,

Metrics