Abstract

We describe a portable diode-laser-based sensor for NH3 detection using vibrational overtone absorption spectroscopy at 1.53 µm. Use of fiber-coupled optical elements makes such a trace gas sensor rugged and easy to align. On-line data acquisition and processing requiring <30 s can be performed with a laptop PC running LabVIEW software. The gas sensor was used primarily for NH3 concentration measurements with a sensitivity of 0.7 parts per million (signal-to-noise ratio of 3) over a two-week period in a bioreactor being developed at the NASA Johnson Space Center for water treatment technologies to support long-duration space missions. The feasibility of simultaneous, real-time measurements of NH3 and CO2 concentrations is also reported.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, H. Kotani, H. Tagawa, “Spectral measurements of NH3 and H2O for pollutant gas monitoring by 1.5 µm InGaAs/InP lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
    [CrossRef]
  2. M. Feher, P. A. Martin, A. Rohrbacher, A. M. Soliva, J. P. Maier, “Inexpensive near-infrared diode-laser-based detection system for ammonia,” Appl. Opt. 32, 2028–2030 (1993).
    [CrossRef] [PubMed]
  3. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 µm,” Appl. Phys. B 67 (3), 283–288 (1998).
  4. I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67 (3), 297–305 (1998).
  5. G. Modugno, C. Corsi, “Water vapour and carbon dioxide interference in the high sensitivity detection of NH3 with semiconductor diode lasers at 1.5 µm,” Infrared Phys. Technol. 40, 93–99 (1999).
    [CrossRef]
  6. L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
    [CrossRef]
  7. M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 µm with diode laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
    [CrossRef]
  8. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997).
    [CrossRef] [PubMed]
  9. Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
    [CrossRef]
  10. R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
    [CrossRef]
  11. E. V. Stepanov, P. V. Zyrianov, A. N. Khusnutdinov, “Multicomponent gas analyzers based on tunable diode lasers,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 271–281 (1996).
    [CrossRef]
  12. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  13. M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, Y. Ikeda, “In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 µm,” Appl. Opt. 40, 821–828 (2001).
    [CrossRef]
  14. M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 µm in bioreactor vent gases,” Appl. Opt. 40, (2001). (LP 17579)
  15. A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed-feedback laser,” Appl. Opt. 39, 6866–6872 (2000).
    [CrossRef]
  16. D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, “Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5 µm,” Appl. Phys. B 67, 339–345 (1998).
    [CrossRef]
  17. K. L. Haller, P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed., Proc. SPIE1435, 298–309 (1991).
    [CrossRef]
  18. E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968).
    [CrossRef]
  19. D. J. Brassington, “Tunable diode laser absorption spectroscopy for the measurement of atmospheric species,” in Spectroscopy in Environmental Science, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1995), pp. 85–147.
  20. C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, New York, 1955), Chap. 13, p. 364, Table 13.4.
  21. G. Durry, I. Pouchet, N. Amarouche, T. Danguy, G. Megie, “Shot-noise-limited dual-beam detector for atmospheric trace-gas monitoring with near-infrared diode lasers,” Appl. Opt. 39, 5609–5619 (2000).
    [CrossRef]
  22. G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, pp. 236–247 (1996).
  23. P. Brimblecombe, S. L. Clegg, “Solubility of ammonia in pure aqueous and multicomponent solutions,” J. Phys. Chem. 93, 7237–7248 (1989).
    [CrossRef]
  24. J. C. Graf, NASA JSC Crew and Thermal Systems Division, Houston, Tex. (personal communication, September2000).

2001

2000

A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed-feedback laser,” Appl. Opt. 39, 6866–6872 (2000).
[CrossRef]

Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
[CrossRef]

G. Durry, I. Pouchet, N. Amarouche, T. Danguy, G. Megie, “Shot-noise-limited dual-beam detector for atmospheric trace-gas monitoring with near-infrared diode lasers,” Appl. Opt. 39, 5609–5619 (2000).
[CrossRef]

1999

G. Modugno, C. Corsi, “Water vapour and carbon dioxide interference in the high sensitivity detection of NH3 with semiconductor diode lasers at 1.5 µm,” Infrared Phys. Technol. 40, 93–99 (1999).
[CrossRef]

1998

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 µm,” Appl. Phys. B 67 (3), 283–288 (1998).

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67 (3), 297–305 (1998).

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, “Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5 µm,” Appl. Phys. B 67, 339–345 (1998).
[CrossRef]

1997

1993

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

M. Feher, P. A. Martin, A. Rohrbacher, A. M. Soliva, J. P. Maier, “Inexpensive near-infrared diode-laser-based detection system for ammonia,” Appl. Opt. 32, 2028–2030 (1993).
[CrossRef] [PubMed]

1989

P. Brimblecombe, S. L. Clegg, “Solubility of ammonia in pure aqueous and multicomponent solutions,” J. Phys. Chem. 93, 7237–7248 (1989).
[CrossRef]

1983

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral measurements of NH3 and H2O for pollutant gas monitoring by 1.5 µm InGaAs/InP lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

1968

E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968).
[CrossRef]

Amarouche, N.

Apituley, A.

R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
[CrossRef]

Baer, D. S.

Baillargeon, J. N.

Berden, G.

R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
[CrossRef]

Bien, F.

G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, pp. 236–247 (1996).

Brand, J. A.

G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, pp. 236–247 (1996).

Brassington, D. J.

D. J. Brassington, “Tunable diode laser absorption spectroscopy for the measurement of atmospheric species,” in Spectroscopy in Environmental Science, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1995), pp. 85–147.

Brimblecombe, P.

P. Brimblecombe, S. L. Clegg, “Solubility of ammonia in pure aqueous and multicomponent solutions,” J. Phys. Chem. 93, 7237–7248 (1989).
[CrossRef]

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Capasso, F.

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chapman, W. B.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 µm,” Appl. Phys. B 67 (3), 283–288 (1998).

Cho, A. Y.

Claps, R.

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 µm in bioreactor vent gases,” Appl. Opt. 40, (2001). (LP 17579)

Clegg, S. L.

P. Brimblecombe, S. L. Clegg, “Solubility of ammonia in pure aqueous and multicomponent solutions,” J. Phys. Chem. 93, 7237–7248 (1989).
[CrossRef]

Corsi, C.

G. Modugno, C. Corsi, “Water vapour and carbon dioxide interference in the high sensitivity detection of NH3 with semiconductor diode lasers at 1.5 µm,” Infrared Phys. Technol. 40, 93–99 (1999).
[CrossRef]

Curl, R. F.

D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, “Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5 µm,” Appl. Phys. B 67, 339–345 (1998).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Danguy, T.

Durry, G.

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Englich, F. V.

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 µm in bioreactor vent gases,” Appl. Opt. 40, (2001). (LP 17579)

Feher, M.

Feller, G. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 µm,” Appl. Phys. B 67 (3), 283–288 (1998).

Fetzer, G. J.

G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, pp. 236–247 (1996).

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gmachl, C.

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Goldstein, N.

G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, pp. 236–247 (1996).

Graf, J. C.

J. C. Graf, NASA JSC Crew and Thermal Systems Division, Houston, Tex. (personal communication, September2000).

Groff, K. W.

G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, pp. 236–247 (1996).

Haller, K. L.

K. L. Haller, P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed., Proc. SPIE1435, 298–309 (1991).
[CrossRef]

Hanson, R. K.

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 µm in bioreactor vent gases,” Appl. Opt. 40, (2001). (LP 17579)

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, Y. Ikeda, “In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 µm,” Appl. Opt. 40, 821–828 (2001).
[CrossRef]

M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 µm with diode laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 µm,” Appl. Phys. B 67 (3), 283–288 (1998).

He, Y.

Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

Hegelund, F.

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

Hobbs, P. C. D.

P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997).
[CrossRef] [PubMed]

K. L. Haller, P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed., Proc. SPIE1435, 298–309 (1991).
[CrossRef]

Hutchinson, A. L.

Ikeda, Y.

Jaeger, T.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67 (3), 297–305 (1998).

Jeffries, J. B.

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 µm in bioreactor vent gases,” Appl. Opt. 40, (2001). (LP 17579)

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kaspersen, P.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67 (3), 297–305 (1998).

Khusnutdinov, A. N.

E. V. Stepanov, P. V. Zyrianov, A. N. Khusnutdinov, “Multicomponent gas analyzers based on tunable diode lasers,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 271–281 (1996).
[CrossRef]

Kim, S.

Kosterev, A. A.

Kotani, H.

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral measurements of NH3 and H2O for pollutant gas monitoring by 1.5 µm InGaAs/InP lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

Lancaster, D. G.

D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, “Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5 µm,” Appl. Phys. B 67, 339–345 (1998).
[CrossRef]

Lee, J.

G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, pp. 236–247 (1996).

Linnerud, I.

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67 (3), 297–305 (1998).

Lundsberg-Nielsen, L.

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

Maier, J. P.

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Martin, P. A.

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Megie, G.

Meijer, G.

R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 µm,” Appl. Phys. B 67 (3), 283–288 (1998).

Modugno, G.

G. Modugno, C. Corsi, “Water vapour and carbon dioxide interference in the high sensitivity detection of NH3 with semiconductor diode lasers at 1.5 µm,” Infrared Phys. Technol. 40, 93–99 (1999).
[CrossRef]

Monlux, G.

G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, pp. 236–247 (1996).

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Nicolaisen, F. M.

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

Ohtsu, M.

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral measurements of NH3 and H2O for pollutant gas monitoring by 1.5 µm InGaAs/InP lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

Orr, B. J.

Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

Peeters, R.

R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
[CrossRef]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Pouchet, I.

Richter, D.

D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, “Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5 µm,” Appl. Phys. B 67, 339–345 (1998).
[CrossRef]

Richtsmeister, S. C.

G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, pp. 236–247 (1996).

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Rohrbacher, A.

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Sanders, S. T.

Schawlow, A. L.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, New York, 1955), Chap. 13, p. 364, Table 13.4.

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Sivco, D. L.

Soliva, A. M.

Stepanov, E. V.

E. V. Stepanov, P. V. Zyrianov, A. N. Khusnutdinov, “Multicomponent gas analyzers based on tunable diode lasers,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 271–281 (1996).
[CrossRef]

Tagawa, H.

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral measurements of NH3 and H2O for pollutant gas monitoring by 1.5 µm InGaAs/InP lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

Tittel, F. K.

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 µm in bioreactor vent gases,” Appl. Opt. 40, (2001). (LP 17579)

A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed-feedback laser,” Appl. Opt. 39, 6866–6872 (2000).
[CrossRef]

D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, “Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5 µm,” Appl. Phys. B 67, 339–345 (1998).
[CrossRef]

Townes, C. H.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, New York, 1955), Chap. 13, p. 364, Table 13.4.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Walker, M.

G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, pp. 236–247 (1996).

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Webber, M. E.

M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, Y. Ikeda, “In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 µm,” Appl. Opt. 40, 821–828 (2001).
[CrossRef]

M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, R. K. Hanson, “Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 µm in bioreactor vent gases,” Appl. Opt. 40, (2001). (LP 17579)

M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 µm with diode laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 µm,” Appl. Phys. B 67 (3), 283–288 (1998).

Whiting, E. E.

E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Zmarzly, P.

G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, pp. 236–247 (1996).

Zyrianov, P. V.

E. V. Stepanov, P. V. Zyrianov, A. N. Khusnutdinov, “Multicomponent gas analyzers based on tunable diode lasers,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 271–281 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, “Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5 µm,” Appl. Phys. B 67, 339–345 (1998).
[CrossRef]

R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231–236 (2000).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 µm,” Appl. Phys. B 67 (3), 283–288 (1998).

I. Linnerud, P. Kaspersen, T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67 (3), 297–305 (1998).

Chem. Phys. Lett.

Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000).
[CrossRef]

Infrared Phys. Technol.

G. Modugno, C. Corsi, “Water vapour and carbon dioxide interference in the high sensitivity detection of NH3 with semiconductor diode lasers at 1.5 µm,” Infrared Phys. Technol. 40, 93–99 (1999).
[CrossRef]

J. Mol. Spectrosc.

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

J. Phys. Chem.

P. Brimblecombe, S. L. Clegg, “Solubility of ammonia in pure aqueous and multicomponent solutions,” J. Phys. Chem. 93, 7237–7248 (1989).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968).
[CrossRef]

Jpn. J. Appl. Phys.

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral measurements of NH3 and H2O for pollutant gas monitoring by 1.5 µm InGaAs/InP lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

Other

D. J. Brassington, “Tunable diode laser absorption spectroscopy for the measurement of atmospheric species,” in Spectroscopy in Environmental Science, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1995), pp. 85–147.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, New York, 1955), Chap. 13, p. 364, Table 13.4.

K. L. Haller, P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed., Proc. SPIE1435, 298–309 (1991).
[CrossRef]

E. V. Stepanov, P. V. Zyrianov, A. N. Khusnutdinov, “Multicomponent gas analyzers based on tunable diode lasers,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 271–281 (1996).
[CrossRef]

J. C. Graf, NASA JSC Crew and Thermal Systems Division, Houston, Tex. (personal communication, September2000).

G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bien, S. C. Richtsmeister, J. Lee, “In-situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, pp. 236–247 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the DFB diode-laser-based ammonia sensor.

Fig. 2
Fig. 2

Diagram depicting the main subsystems of the NASA JSC BWP system and attached NH3 diode-laser-based gas sensor. The actual size of the BWP is 2 m × 2 m × 3 m.

Fig. 3
Fig. 3

Intercomparison of concentration measurements of a 4-ppm NH3 in a N2 mixture with a 1.53-µm DFB diode laser and a single-frequency quantum-cascade laser-based sensor operating at 10.07 µm.

Fig. 4
Fig. 4

Algorithm developed to obtain the transmission spectrum (%) from the logarithmic output of the Nirvana detector in the autobalanced mode. See text for details.

Fig. 5
Fig. 5

Typical NH3 absorption line at 6528.76 cm-1 observed from the NASA JSC bioreactor, with the detector operating in autobalance mode. The residual obtained from the Voigt line-shape fit is shown below the NH3 spectrum and indicates a limiting detection sensitivity of 10-4 optical density [optical density is given by -ln(I/I0)]. The NH3 concentration from the Voigt fit is 1.4 ppm.

Fig. 6
Fig. 6

Measured NH3 and CO2 absorption lines listed in Table 1, centered at 6528.8 cm-1, observed from the BWP vent gases. (a) Raw data obtained from a typical laser scan over ∼0.3 cm-1. The two absorption features at 6528.76 and 6528.89 cm-1 are clearly visible. (b) Result of the two-step fitting routine applied to line A, in which a NH3 concentration of 2.1 ppm is obtained. (c) Fit performed on the absorption feature that includes both lines B and C, showing a CO2 concentration of 0.9%.

Fig. 7
Fig. 7

Time history of NH3 concentration from NASA JSC bioreactor vent gases for a three-day period.

Fig. 8
Fig. 8

Ammonia concentration measurements for an 11-day period. Filled circles correspond to data points obtained in the autobalance mode, and triangles correspond to data obtained in the linear mode of the detector. Measured ammonia levels never exceeded 5.6 ppm during this period. A three-day gap occurred when a 2-µm DFB diode laser14 was used in the sensor instead of the 1.53-µm diode laser.

Fig. 9
Fig. 9

Simultaneous CO2 and NH3 concentration measurements. The CO2 levels do not exceed 20,000 ppm. The time period can be related to the ammonia measurements reported in Fig. 7. The continuous curves represent moving averages of ten data points for the two gases being measured.

Tables (2)

Tables Icon

Table 1 NH3 and CO2 Absorption Lines

Tables Icon

Table 2 Aqueous- and Gas-Phase NH3 Concentrations Calculated from Measurements of [NH4 +], pH, and with Henry’s Law

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

II0=exp-SνϕνPχjl,
NH3O2 NO2-O2 NO3-.
Tν=100 exp- AT V*ν+1exp- AT Vν+1,

Metrics