Abstract

Wavelength-dependent elastic-scattering spectra of highly scattering media measured with only a single fiber for both light delivery and collection are presented. White light is used as a source, and oscillations of the detected light intensities are seen as a function of wavelength. The maximum and minimum of the oscillations can be used to determine scatterer size for monodisperse distributions of spheres when the refractive indices are known. In addition, several properties of the probe relevant to tissue diagnosis are examined and discussed including the effects of absorption, a broad distribution of scatterers, and the depth probed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Jiang, J. Pierce, J. Kao, E. Sevick-Muraca, “Measurement of particle-size distribution and volume fraction in concentrated suspensions with photon migration techniques,” Appl. Opt. 36, 3310–3318 (1997).
    [CrossRef] [PubMed]
  2. H. Jiang, G. Marquez, L. V. Wang, “Particle sizing in concentrated suspensions by use of steady-state, continuous-wave photon-migration techniques,” Opt. Lett. 23, 394–396 (1998).
    [CrossRef]
  3. G. Balgi, J. Reynolds, R. H. Mayer, R. E. Cooley, E. M. Sevick-Muraca, “Measurements of multiply scattered light for on-line monitoring of changes in size distribution of cell debris suspension,” Biotechnol. Prog. 15, 1106–1114 (1999).
    [CrossRef] [PubMed]
  4. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
    [CrossRef]
  5. A. M. K. Nillson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998).
    [CrossRef]
  6. A. H. Hielscher, J. R. Mourant, I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
    [CrossRef] [PubMed]
  7. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
    [CrossRef]
  8. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
    [CrossRef]
  9. G. Franssens, M. de Maziere, D. Fonteyn, “Determination of the aerosol size distribution by analytic inversion of the extinction spectrum in the complex anomalous diffraction approximation,” Appl. Opt. 39, 4214–4231 (2000).
    [CrossRef]
  10. T. P. Moffit, S. A. Prahl, “In-vivo sized-fiber spectroscopy,” in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE3917, 225–231 (2000).
    [CrossRef]
  11. C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  12. J. R. Mourant, T. M. Johnson, J. P. Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. (to be published).
  13. J. R. Mourant, J. Boyer, A. H. Hielscher, I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source–detector separations,” Opt. Lett. 21, 546–548 (1996).
    [CrossRef] [PubMed]
  14. J. M. Schmitt, G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998).
    [CrossRef]
  15. M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
    [CrossRef] [PubMed]
  16. R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994), Chap. 7.

2000 (2)

M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
[CrossRef] [PubMed]

G. Franssens, M. de Maziere, D. Fonteyn, “Determination of the aerosol size distribution by analytic inversion of the extinction spectrum in the complex anomalous diffraction approximation,” Appl. Opt. 39, 4214–4231 (2000).
[CrossRef]

1999 (2)

G. Balgi, J. Reynolds, R. H. Mayer, R. E. Cooley, E. M. Sevick-Muraca, “Measurements of multiply scattered light for on-line monitoring of changes in size distribution of cell debris suspension,” Biotechnol. Prog. 15, 1106–1114 (1999).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

1998 (5)

1997 (2)

1996 (1)

Andersson-Engels, S.

Backman, V.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Balgi, G.

G. Balgi, J. Reynolds, R. H. Mayer, R. E. Cooley, E. M. Sevick-Muraca, “Measurements of multiply scattered light for on-line monitoring of changes in size distribution of cell debris suspension,” Biotechnol. Prog. 15, 1106–1114 (1999).
[CrossRef] [PubMed]

Bigio, I. J.

Bohren, C. F.

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Boyer, J.

Canpolat, M.

M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
[CrossRef] [PubMed]

Cooley, R. E.

G. Balgi, J. Reynolds, R. H. Mayer, R. E. Cooley, E. M. Sevick-Muraca, “Measurements of multiply scattered light for on-line monitoring of changes in size distribution of cell debris suspension,” Biotechnol. Prog. 15, 1106–1114 (1999).
[CrossRef] [PubMed]

Cotran, R. S.

R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994), Chap. 7.

Crawford, J. M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Dasari, R. R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

de Maziere, M.

Eick, A. A.

Feld, M. S.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Fonteyn, D.

Franssens, G.

Freyer, J. P.

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

J. R. Mourant, T. M. Johnson, J. P. Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. (to be published).

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Hamano, T.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Hielscher, A. H.

Hoffman, D. R.

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Itzkan, I.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Jiang, H.

Johnson, T. M.

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

J. R. Mourant, T. M. Johnson, J. P. Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. (to be published).

Kao, J.

Kumar, G.

Kumar, V.

R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994), Chap. 7.

Lima, C.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Liu, D. L.

Manoharan, R.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Marquez, G.

Mayer, R. H.

G. Balgi, J. Reynolds, R. H. Mayer, R. E. Cooley, E. M. Sevick-Muraca, “Measurements of multiply scattered light for on-line monitoring of changes in size distribution of cell debris suspension,” Biotechnol. Prog. 15, 1106–1114 (1999).
[CrossRef] [PubMed]

Moffit, T. P.

T. P. Moffit, S. A. Prahl, “In-vivo sized-fiber spectroscopy,” in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE3917, 225–231 (2000).
[CrossRef]

Mourant, J. R.

Nillson, A. M. K.

Nusrat, A.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Pierce, J.

Prahl, S. A.

T. P. Moffit, S. A. Prahl, “In-vivo sized-fiber spectroscopy,” in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE3917, 225–231 (2000).
[CrossRef]

Reynolds, J.

G. Balgi, J. Reynolds, R. H. Mayer, R. E. Cooley, E. M. Sevick-Muraca, “Measurements of multiply scattered light for on-line monitoring of changes in size distribution of cell debris suspension,” Biotechnol. Prog. 15, 1106–1114 (1999).
[CrossRef] [PubMed]

Robbins, S. L.

R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994), Chap. 7.

Schmitt, J. M.

Seiler, M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Sevick-Muraca, E.

Sevick-Muraca, E. M.

G. Balgi, J. Reynolds, R. H. Mayer, R. E. Cooley, E. M. Sevick-Muraca, “Measurements of multiply scattered light for on-line monitoring of changes in size distribution of cell debris suspension,” Biotechnol. Prog. 15, 1106–1114 (1999).
[CrossRef] [PubMed]

Shen, D.

Shields, S.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Sturesson, C.

Van Dam, J.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Wallace, M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Wang, L. V.

Zonios, G.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Appl. Opt. (6)

Biotechnol. Prog. (1)

G. Balgi, J. Reynolds, R. H. Mayer, R. E. Cooley, E. M. Sevick-Muraca, “Measurements of multiply scattered light for on-line monitoring of changes in size distribution of cell debris suspension,” Biotechnol. Prog. 15, 1106–1114 (1999).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Opt. Lett. (2)

Phys. Med. Biol. (1)

M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Other (4)

T. P. Moffit, S. A. Prahl, “In-vivo sized-fiber spectroscopy,” in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE3917, 225–231 (2000).
[CrossRef]

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

J. R. Mourant, T. M. Johnson, J. P. Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. (to be published).

R. S. Cotran, V. Kumar, S. L. Robbins, Pathological Basis of Disease (Saunders, Philadelphia, Pa., 1994), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Geometry of the measurements and Monte Carlo simulations. Light is delivered from a small white-light source to the tissue phantom by fiber optics. The 100-µm optical fiber from the lamp is butted to a 200-µm fiber that is in contact with the scattering medium. The collection path is also through the 200-µm and into a 100-µm optical fiber that guides the light to a spectrograph coupled to a CCD array.

Fig. 2
Fig. 2

Elastic scatter spectrum of several tissue phantoms. Diameters of the polystyrene particles d were 0.329, 0.451, 0.890, and 2.020 µm. The reduced scattering coefficient μ s ′ = 1.5 mm-1 at 633 nm.

Fig. 3
Fig. 3

Derivatives of the spectra in Fig. 2.

Fig. 4
Fig. 4

Spectra for suspensions with reduced scattering coefficients of 0.75 and 1.50 mm-1 at 633 nm and for two different particle sizes, 0.451 and 2.020 µm. Spectra of the same size spheres were scaled to have the same amplitude to facilitate comparison of wavelength-dependent differences. The vertical lines mark the positions of the maxima and minima of the derivative spectra.

Fig. 5
Fig. 5

Particle diameter as a function of the total number of maxima and minima of the derivatives of the elastic scatter spectrum between 450 and 800 nm.

Fig. 6
Fig. 6

Derivatives of elastic scatter spectra of 0.990-µm-diameter spheres immersed in water and optical couplant.

Fig. 7
Fig. 7

Absorption spectra of blue dye for three different concentrations. Absorption coefficients (absorption divided by log10 e) at the maxima are 0.20, 0.30, and 0.40 mm-1. OD, optical density.

Fig. 8
Fig. 8

Two spectra of 990-µm-diameter polystyrene spheres, before and after we added blue dye, are compared. The maximum absorption effect can be seen around 600 nm. The reduced scattering coefficient was 1.50 mm-1 at 633 nm.

Fig. 9
Fig. 9

Derivatives of one spectrum of 990-µm-diameter polystyrene spheres before we added blue dye and of three other spectra after we added the dye. There is a shift of a maximum where the absorption coefficient was large. The μ s ′ = 1.50 mm-1 at 633 nm.

Fig. 10
Fig. 10

Comparison of experimental measurement and Monte Carlo calculation of the elastic scatter signal. The scatterers were 0.890-µm-diameter polystyrene spheres in water with a concentration such that μ s ′ = 1.50 mm-1 at 633 nm.

Fig. 11
Fig. 11

Particle size distributions used in Monte Carlo simulations (see Fig. 12).

Fig. 12
Fig. 12

Number of collected photons as a function of wavelength for the size distributions in Fig. 11. The filled circles are the results of the narrower size distribution in Fig. 11, and the crosses are the results for the broader size distribution. The error bars are the square root of the number of collected photons. The results for the larger size distribution were smoothed with a 5-point boxcar moving average.

Fig. 13
Fig. 13

Sum of the number of scattering events for all collected photons is plotted as a function of depth. These results were determined from a Monte Carlo simulation of polystyrene spheres in water: sphere diameter is 0.505 µm, g = 0.827, μ s ′ = 1.5 mm-1 at 630 nm.

Fig. 14
Fig. 14

Elastic scatter spectra of 990-µm polystyrene spheres and the results of fitting several wavelength points to Eq. (3).

Tables (2)

Tables Icon

Table 1 Positions of the Maxima and Minima of the Derivative Elastic Scatter Spectra

Tables Icon

Table 2 Mean and Median Depths of Photon Scattering Events for Photon Trajectories that Result in Photons Entering the Collection Fiber

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ic=It-IbIs-Ib,
fx=1/xexp-lnx-lnxm2/2σw2.
Iλ=c0+c1μsλϕ1180°Pθ, λdθ.

Metrics