Abstract

Upconversion emission has been obtained from Er-focused ion-beam (FIB) implanted GaN. Visible green emission at the 522- and 546-nm range were excited with infrared (IR) laser sources at either 840 or 1000 nm, or with both lasers simultaneously. By implanting closely spaced patterns with the FIB, we demonstrated the concept of storing data in Er-implanted GaN. Information stored as data bits consists of patterns of implanted locations as logic 1 and unimplanted locations as logic 0. The photon upconversion process in Er ions is utilized to read the stored information. This process makes use of the IR lasers to excite visible emission. The integrated upconversion emission power was measured to be ∼40 pW when pumped by a 840-nm laser at 265 mW and by a 1000-nm laser at 208 mW. Patterns as small as 0.5 µm were implanted and read. Three-dimensional optical memory based on rare-earth-doped semiconductors could in theory approach a storage capacity of 1012 bits/cm3.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Esener, M. H. Kryder, W. D. Doyle, M. Keshner, M. Mansuripur, D. A. Thompson, The Future of Data Storage Technologies (World Technology Division, International Technology Research Institute, Loyola College, Baltimore, Md., 1999), Chap. 1; http://itri.loyola.edu/hdmen/toc.htm .
  2. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
    [CrossRef]
  3. B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
    [CrossRef]
  4. S. M. Manfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [CrossRef]
  5. K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 37, 2274–2278 (1998).
    [CrossRef]
  6. M. E. Marhic, “Storage limit of two-photon-based three-dimensional memories with parallel access,” Opt. Lett. 16, 1272–1273 (1991).
    [CrossRef] [PubMed]
  7. S. Hunter, F. Kiamilev, S. Esener, D. A. Parthenopoulos, P. M. Rentzepis, “Potentials of two-photon based 3-D optical memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990).
    [CrossRef] [PubMed]
  8. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
    [CrossRef] [PubMed]
  9. D. Day, M. Gu, “Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer,” Appl. Opt. 37, 6299–6304 (1998).
    [CrossRef]
  10. H. E. Pudavar, M. P. Joshi, P. N. Prasad, “High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout,” Appl. Phys. Lett. 74, 1338–1340 (1999).
    [CrossRef]
  11. T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, E. Kratzig, “Two-step two-color recording in a photorefractive praseodymium-doped La3Ga5SiO14 crystal,” Appl. Phys. Lett. 74, 4037–4039 (1999).
    [CrossRef]
  12. P. J. Van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  13. G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4, 370–375 (1995).
    [CrossRef]
  14. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
    [CrossRef] [PubMed]
  15. K. Baba, R. Yamada, S. Nakao, M. Miyagi, “Three-dimensional optical disks using metallic island films: a proposal,” Electron. Lett. 28, 676–678 (1992).
    [CrossRef]
  16. J. R. Wullert, P. J. Delfyett, “Multiwavelength, multilevel optical storage using dielectric mirrors,” IEEE Photon. Technol. Lett. 6, 1133–1135 (1994).
    [CrossRef]
  17. J. Qiu, K. Miura, H. Inouye, J. Nishii, K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
    [CrossRef]
  18. E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
    [CrossRef]
  19. F. Goutaland, Y. Ouerdane, A. Boukenter, G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275–277, 276–278 (1998).
  20. M. Dejneka, E. Snitzer, R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin. 65, 227–245 (1995).
    [CrossRef]
  21. J. M. Zavada, D. Zhang, “Luminescence properties of erbium in III-V compound semiconductors,” Solid-State Electron. 38, 1285–1293 (1995).
    [CrossRef]
  22. I. F. Elder, M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, TM,Ho:YAP and Tm,Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
    [CrossRef]
  23. E. B. Mejia, A. N. Starodumov, Y. O. Barmenkov, “Blue and infrared up-conversion in Tm3+-doped fluorozirconate fiber pumped at 1.06, 1.117, and 1.18 µm,” Appl. Phys. Lett. 74, 1540–1542 (1999).
    [CrossRef]
  24. S. Jutamulia, G. M. Storti, J. Lindmayer, W. Seiderman, “Use of electron trapping materials in optical signal processing. 2: Two-dimensional associative memory,” Appl. Opt. 30, 2879–2884 (1991).
    [CrossRef] [PubMed]
  25. S. Kroll, P. Tidlund, “Recording density limit of photon-echo optical storage with high-speed writing and reading,” Appl. Opt. 32, 7233–7242 (1993).
    [CrossRef] [PubMed]
  26. E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, U. P. Wild, “Recording of 6000 holograms by use of spectral hole burning,” Appl. Opt. 34, 4140–4148 (1995).
    [CrossRef] [PubMed]
  27. B. Plagemann, F. R. Graf, S. B. Altner, A. Renn, U. P. Wild, “Exploring the limits of optical storage using persistent spectral hole-burning: holographic recording of 12000 images,” Appl. Phys. B 66, 67–74 (1998).
    [CrossRef]
  28. A. J. Steckl, J. M. Zavada, “Optoelectronic properties and applications of rare-earth-doped GaN,” MRS Bull. 24(9), 33–38 (1999).
  29. A. J. Steckl, J. Heikenfeld, M. Garter, R. Birkhahn, D. S. Lee, “Rare earth doped gallium nitride—light emission from ultraviolet to infrared,” Compd. Semicond. 6, 48–52 (2000).
  30. L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Upconversion luminescence of Er-implanted GaN films by FIB-direct write,” Appl. Phys. Lett. 75, 1833–1835 (1999).
    [CrossRef]
  31. L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Rare earth FIB implantation utilizing Er and Pr liquid alloy ion sources,” J. Vac. Sci. Technol. B 17, 2791–2794 (1999).
    [CrossRef]
  32. L. C. Chao, A. J. Steckl, “Development of an Er-Ni liquid metal ion source,” J. Vac. Sci. Technol. B 17, 1051–1053 (1999).

2000 (1)

A. J. Steckl, J. Heikenfeld, M. Garter, R. Birkhahn, D. S. Lee, “Rare earth doped gallium nitride—light emission from ultraviolet to infrared,” Compd. Semicond. 6, 48–52 (2000).

1999 (7)

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Upconversion luminescence of Er-implanted GaN films by FIB-direct write,” Appl. Phys. Lett. 75, 1833–1835 (1999).
[CrossRef]

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Rare earth FIB implantation utilizing Er and Pr liquid alloy ion sources,” J. Vac. Sci. Technol. B 17, 2791–2794 (1999).
[CrossRef]

L. C. Chao, A. J. Steckl, “Development of an Er-Ni liquid metal ion source,” J. Vac. Sci. Technol. B 17, 1051–1053 (1999).

E. B. Mejia, A. N. Starodumov, Y. O. Barmenkov, “Blue and infrared up-conversion in Tm3+-doped fluorozirconate fiber pumped at 1.06, 1.117, and 1.18 µm,” Appl. Phys. Lett. 74, 1540–1542 (1999).
[CrossRef]

A. J. Steckl, J. M. Zavada, “Optoelectronic properties and applications of rare-earth-doped GaN,” MRS Bull. 24(9), 33–38 (1999).

H. E. Pudavar, M. P. Joshi, P. N. Prasad, “High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout,” Appl. Phys. Lett. 74, 1338–1340 (1999).
[CrossRef]

T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, E. Kratzig, “Two-step two-color recording in a photorefractive praseodymium-doped La3Ga5SiO14 crystal,” Appl. Phys. Lett. 74, 4037–4039 (1999).
[CrossRef]

1998 (7)

K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 37, 2274–2278 (1998).
[CrossRef]

D. Day, M. Gu, “Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer,” Appl. Opt. 37, 6299–6304 (1998).
[CrossRef]

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

J. Qiu, K. Miura, H. Inouye, J. Nishii, K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

F. Goutaland, Y. Ouerdane, A. Boukenter, G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275–277, 276–278 (1998).

B. Plagemann, F. R. Graf, S. B. Altner, A. Renn, U. P. Wild, “Exploring the limits of optical storage using persistent spectral hole-burning: holographic recording of 12000 images,” Appl. Phys. B 66, 67–74 (1998).
[CrossRef]

I. F. Elder, M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, TM,Ho:YAP and Tm,Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

1996 (2)

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

1995 (4)

M. Dejneka, E. Snitzer, R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin. 65, 227–245 (1995).
[CrossRef]

J. M. Zavada, D. Zhang, “Luminescence properties of erbium in III-V compound semiconductors,” Solid-State Electron. 38, 1285–1293 (1995).
[CrossRef]

G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4, 370–375 (1995).
[CrossRef]

E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, U. P. Wild, “Recording of 6000 holograms by use of spectral hole burning,” Appl. Opt. 34, 4140–4148 (1995).
[CrossRef] [PubMed]

1994 (1)

J. R. Wullert, P. J. Delfyett, “Multiwavelength, multilevel optical storage using dielectric mirrors,” IEEE Photon. Technol. Lett. 6, 1133–1135 (1994).
[CrossRef]

1993 (1)

1992 (2)

K. Baba, R. Yamada, S. Nakao, M. Miyagi, “Three-dimensional optical disks using metallic island films: a proposal,” Electron. Lett. 28, 676–678 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

1991 (3)

1990 (2)

1963 (1)

Akella, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Altner, S. B.

B. Plagemann, F. R. Graf, S. B. Altner, A. Renn, U. P. Wild, “Exploring the limits of optical storage using persistent spectral hole-burning: holographic recording of 12000 images,” Appl. Phys. B 66, 67–74 (1998).
[CrossRef]

E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, U. P. Wild, “Recording of 6000 holograms by use of spectral hole burning,” Appl. Opt. 34, 4140–4148 (1995).
[CrossRef] [PubMed]

Baba, K.

K. Baba, R. Yamada, S. Nakao, M. Miyagi, “Three-dimensional optical disks using metallic island films: a proposal,” Electron. Lett. 28, 676–678 (1992).
[CrossRef]

Barmenkov, Y. O.

E. B. Mejia, A. N. Starodumov, Y. O. Barmenkov, “Blue and infrared up-conversion in Tm3+-doped fluorozirconate fiber pumped at 1.06, 1.117, and 1.18 µm,” Appl. Phys. Lett. 74, 1540–1542 (1999).
[CrossRef]

Bernet, S.

Betzig, E.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Birkhahn, R.

A. J. Steckl, J. Heikenfeld, M. Garter, R. Birkhahn, D. S. Lee, “Rare earth doped gallium nitride—light emission from ultraviolet to infrared,” Compd. Semicond. 6, 48–52 (2000).

Boukenter, A.

F. Goutaland, Y. Ouerdane, A. Boukenter, G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275–277, 276–278 (1998).

Chang, C.-H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Chao, L. C.

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Upconversion luminescence of Er-implanted GaN films by FIB-direct write,” Appl. Phys. Lett. 75, 1833–1835 (1999).
[CrossRef]

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Rare earth FIB implantation utilizing Er and Pr liquid alloy ion sources,” J. Vac. Sci. Technol. B 17, 2791–2794 (1999).
[CrossRef]

L. C. Chao, A. J. Steckl, “Development of an Er-Ni liquid metal ion source,” J. Vac. Sci. Technol. B 17, 1051–1053 (1999).

Cheng, J.

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Rare earth FIB implantation utilizing Er and Pr liquid alloy ion sources,” J. Vac. Sci. Technol. B 17, 2791–2794 (1999).
[CrossRef]

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Upconversion luminescence of Er-implanted GaN films by FIB-direct write,” Appl. Phys. Lett. 75, 1833–1835 (1999).
[CrossRef]

Chi, C. J.

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Upconversion luminescence of Er-implanted GaN films by FIB-direct write,” Appl. Phys. Lett. 75, 1833–1835 (1999).
[CrossRef]

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Rare earth FIB implantation utilizing Er and Pr liquid alloy ion sources,” J. Vac. Sci. Technol. B 17, 2791–2794 (1999).
[CrossRef]

Chyr, T.

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Rare earth FIB implantation utilizing Er and Pr liquid alloy ion sources,” J. Vac. Sci. Technol. B 17, 2791–2794 (1999).
[CrossRef]

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Upconversion luminescence of Er-implanted GaN films by FIB-direct write,” Appl. Phys. Lett. 75, 1833–1835 (1999).
[CrossRef]

Day, D.

Dejneka, M.

M. Dejneka, E. Snitzer, R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin. 65, 227–245 (1995).
[CrossRef]

Delfyett, P. J.

J. R. Wullert, P. J. Delfyett, “Multiwavelength, multilevel optical storage using dielectric mirrors,” IEEE Photon. Technol. Lett. 6, 1133–1135 (1994).
[CrossRef]

Downing, E.

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Elder, I. F.

I. F. Elder, M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, TM,Ho:YAP and Tm,Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

Esener, S.

Finn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Garter, M.

A. J. Steckl, J. Heikenfeld, M. Garter, R. Birkhahn, D. S. Lee, “Rare earth doped gallium nitride—light emission from ultraviolet to infrared,” Compd. Semicond. 6, 48–52 (2000).

Goto, K.

K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 37, 2274–2278 (1998).
[CrossRef]

Goutaland, F.

F. Goutaland, Y. Ouerdane, A. Boukenter, G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275–277, 276–278 (1998).

Graf, F. R.

B. Plagemann, F. R. Graf, S. B. Altner, A. Renn, U. P. Wild, “Exploring the limits of optical storage using persistent spectral hole-burning: holographic recording of 12000 images,” Appl. Phys. B 66, 67–74 (1998).
[CrossRef]

E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, U. P. Wild, “Recording of 6000 holograms by use of spectral hole burning,” Appl. Opt. 34, 4140–4148 (1995).
[CrossRef] [PubMed]

Gu, M.

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Heikenfeld, J.

A. J. Steckl, J. Heikenfeld, M. Garter, R. Birkhahn, D. S. Lee, “Rare earth doped gallium nitride—light emission from ultraviolet to infrared,” Compd. Semicond. 6, 48–52 (2000).

Hesselink, L.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Hirao, K.

J. Qiu, K. Miura, H. Inouye, J. Nishii, K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

Hunter, S.

Inouye, H.

J. Qiu, K. Miura, H. Inouye, J. Nishii, K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

Johansen, P. M.

T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, E. Kratzig, “Two-step two-color recording in a photorefractive praseodymium-doped La3Ga5SiO14 crystal,” Appl. Phys. Lett. 74, 4037–4039 (1999).
[CrossRef]

Joshi, M. P.

H. E. Pudavar, M. P. Joshi, P. N. Prasad, “High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout,” Appl. Phys. Lett. 74, 1338–1340 (1999).
[CrossRef]

Jutamulia, S.

Kiamilev, F.

Kino, G. S.

S. M. Manfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Kip, D.

T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, E. Kratzig, “Two-step two-color recording in a photorefractive praseodymium-doped La3Ga5SiO14 crystal,” Appl. Phys. Lett. 74, 4037–4039 (1999).
[CrossRef]

Kratzig, E.

T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, E. Kratzig, “Two-step two-color recording in a photorefractive praseodymium-doped La3Ga5SiO14 crystal,” Appl. Phys. Lett. 74, 4037–4039 (1999).
[CrossRef]

Kroll, S.

Kryder, M. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Lande, D.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Lee, B. K.

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Rare earth FIB implantation utilizing Er and Pr liquid alloy ion sources,” J. Vac. Sci. Technol. B 17, 2791–2794 (1999).
[CrossRef]

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Upconversion luminescence of Er-implanted GaN films by FIB-direct write,” Appl. Phys. Lett. 75, 1833–1835 (1999).
[CrossRef]

Lee, D. S.

A. J. Steckl, J. Heikenfeld, M. Garter, R. Birkhahn, D. S. Lee, “Rare earth doped gallium nitride—light emission from ultraviolet to infrared,” Compd. Semicond. 6, 48–52 (2000).

Lindmayer, J.

Liu, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

Manfield, S. M.

S. M. Manfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Maniloff, E. S.

Marhic, M. E.

Mejia, E. B.

E. B. Mejia, A. N. Starodumov, Y. O. Barmenkov, “Blue and infrared up-conversion in Tm3+-doped fluorozirconate fiber pumped at 1.06, 1.117, and 1.18 µm,” Appl. Phys. Lett. 74, 1540–1542 (1999).
[CrossRef]

Miura, K.

J. Qiu, K. Miura, H. Inouye, J. Nishii, K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

Miyagi, M.

K. Baba, R. Yamada, S. Nakao, M. Miyagi, “Three-dimensional optical disks using metallic island films: a proposal,” Electron. Lett. 28, 676–678 (1992).
[CrossRef]

Monnom, G.

F. Goutaland, Y. Ouerdane, A. Boukenter, G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275–277, 276–278 (1998).

Nakao, S.

K. Baba, R. Yamada, S. Nakao, M. Miyagi, “Three-dimensional optical disks using metallic island films: a proposal,” Electron. Lett. 28, 676–678 (1992).
[CrossRef]

Neurgaonkar, R. R.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Nikolajsen, T.

T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, E. Kratzig, “Two-step two-color recording in a photorefractive praseodymium-doped La3Ga5SiO14 crystal,” Appl. Phys. Lett. 74, 4037–4039 (1999).
[CrossRef]

Nishii, J.

J. Qiu, K. Miura, H. Inouye, J. Nishii, K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

Orlov, S. S.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Ouerdane, Y.

F. Goutaland, Y. Ouerdane, A. Boukenter, G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275–277, 276–278 (1998).

Parthenopoulos, D. A.

Payne, M. J. P.

I. F. Elder, M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, TM,Ho:YAP and Tm,Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

Plagemann, B.

B. Plagemann, F. R. Graf, S. B. Altner, A. Renn, U. P. Wild, “Exploring the limits of optical storage using persistent spectral hole-burning: holographic recording of 12000 images,” Appl. Phys. B 66, 67–74 (1998).
[CrossRef]

Prasad, P. N.

H. E. Pudavar, M. P. Joshi, P. N. Prasad, “High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout,” Appl. Phys. Lett. 74, 1338–1340 (1999).
[CrossRef]

Pudavar, H. E.

H. E. Pudavar, M. P. Joshi, P. N. Prasad, “High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout,” Appl. Phys. Lett. 74, 1338–1340 (1999).
[CrossRef]

Qiu, J.

J. Qiu, K. Miura, H. Inouye, J. Nishii, K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Renn, A.

B. Plagemann, F. R. Graf, S. B. Altner, A. Renn, U. P. Wild, “Exploring the limits of optical storage using persistent spectral hole-burning: holographic recording of 12000 images,” Appl. Phys. B 66, 67–74 (1998).
[CrossRef]

E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, U. P. Wild, “Recording of 6000 holograms by use of spectral hole burning,” Appl. Opt. 34, 4140–4148 (1995).
[CrossRef] [PubMed]

Rentzepis, P. M.

Riman, R. E.

M. Dejneka, E. Snitzer, R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin. 65, 227–245 (1995).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

Seiderman, W.

Sincerbox, G. T.

G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4, 370–375 (1995).
[CrossRef]

Snitzer, E.

M. Dejneka, E. Snitzer, R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin. 65, 227–245 (1995).
[CrossRef]

Starodumov, A. N.

E. B. Mejia, A. N. Starodumov, Y. O. Barmenkov, “Blue and infrared up-conversion in Tm3+-doped fluorozirconate fiber pumped at 1.06, 1.117, and 1.18 µm,” Appl. Phys. Lett. 74, 1540–1542 (1999).
[CrossRef]

Steckl, A. J.

A. J. Steckl, J. Heikenfeld, M. Garter, R. Birkhahn, D. S. Lee, “Rare earth doped gallium nitride—light emission from ultraviolet to infrared,” Compd. Semicond. 6, 48–52 (2000).

A. J. Steckl, J. M. Zavada, “Optoelectronic properties and applications of rare-earth-doped GaN,” MRS Bull. 24(9), 33–38 (1999).

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Upconversion luminescence of Er-implanted GaN films by FIB-direct write,” Appl. Phys. Lett. 75, 1833–1835 (1999).
[CrossRef]

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Rare earth FIB implantation utilizing Er and Pr liquid alloy ion sources,” J. Vac. Sci. Technol. B 17, 2791–2794 (1999).
[CrossRef]

L. C. Chao, A. J. Steckl, “Development of an Er-Ni liquid metal ion source,” J. Vac. Sci. Technol. B 17, 1051–1053 (1999).

Storti, G. M.

Strickler, J. H.

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

Tidlund, P.

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Van Heerden, P. J.

Webb, W. W.

Wild, U. P.

B. Plagemann, F. R. Graf, S. B. Altner, A. Renn, U. P. Wild, “Exploring the limits of optical storage using persistent spectral hole-burning: holographic recording of 12000 images,” Appl. Phys. B 66, 67–74 (1998).
[CrossRef]

E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, U. P. Wild, “Recording of 6000 holograms by use of spectral hole burning,” Appl. Opt. 34, 4140–4148 (1995).
[CrossRef] [PubMed]

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Wullert, J. R.

J. R. Wullert, P. J. Delfyett, “Multiwavelength, multilevel optical storage using dielectric mirrors,” IEEE Photon. Technol. Lett. 6, 1133–1135 (1994).
[CrossRef]

Yamada, R.

K. Baba, R. Yamada, S. Nakao, M. Miyagi, “Three-dimensional optical disks using metallic island films: a proposal,” Electron. Lett. 28, 676–678 (1992).
[CrossRef]

Yue, X.

T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, E. Kratzig, “Two-step two-color recording in a photorefractive praseodymium-doped La3Ga5SiO14 crystal,” Appl. Phys. Lett. 74, 4037–4039 (1999).
[CrossRef]

Zavada, J. M.

A. J. Steckl, J. M. Zavada, “Optoelectronic properties and applications of rare-earth-doped GaN,” MRS Bull. 24(9), 33–38 (1999).

J. M. Zavada, D. Zhang, “Luminescence properties of erbium in III-V compound semiconductors,” Solid-State Electron. 38, 1285–1293 (1995).
[CrossRef]

Zhang, D.

J. M. Zavada, D. Zhang, “Luminescence properties of erbium in III-V compound semiconductors,” Solid-State Electron. 38, 1285–1293 (1995).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

B. Plagemann, F. R. Graf, S. B. Altner, A. Renn, U. P. Wild, “Exploring the limits of optical storage using persistent spectral hole-burning: holographic recording of 12000 images,” Appl. Phys. B 66, 67–74 (1998).
[CrossRef]

Appl. Phys. Lett. (7)

E. B. Mejia, A. N. Starodumov, Y. O. Barmenkov, “Blue and infrared up-conversion in Tm3+-doped fluorozirconate fiber pumped at 1.06, 1.117, and 1.18 µm,” Appl. Phys. Lett. 74, 1540–1542 (1999).
[CrossRef]

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Upconversion luminescence of Er-implanted GaN films by FIB-direct write,” Appl. Phys. Lett. 75, 1833–1835 (1999).
[CrossRef]

H. E. Pudavar, M. P. Joshi, P. N. Prasad, “High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout,” Appl. Phys. Lett. 74, 1338–1340 (1999).
[CrossRef]

T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, E. Kratzig, “Two-step two-color recording in a photorefractive praseodymium-doped La3Ga5SiO14 crystal,” Appl. Phys. Lett. 74, 4037–4039 (1999).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

S. M. Manfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Compd. Semicond. (1)

A. J. Steckl, J. Heikenfeld, M. Garter, R. Birkhahn, D. S. Lee, “Rare earth doped gallium nitride—light emission from ultraviolet to infrared,” Compd. Semicond. 6, 48–52 (2000).

Electron. Lett. (1)

K. Baba, R. Yamada, S. Nakao, M. Miyagi, “Three-dimensional optical disks using metallic island films: a proposal,” Electron. Lett. 28, 676–678 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. R. Wullert, P. J. Delfyett, “Multiwavelength, multilevel optical storage using dielectric mirrors,” IEEE Photon. Technol. Lett. 6, 1133–1135 (1994).
[CrossRef]

J. Alloys Compd. (1)

F. Goutaland, Y. Ouerdane, A. Boukenter, G. Monnom, “Visible emission processes in heavily doped Er/Yb silica optical fibers,” J. Alloys Compd. 275–277, 276–278 (1998).

J. Lumin. (1)

M. Dejneka, E. Snitzer, R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin. 65, 227–245 (1995).
[CrossRef]

J. Vac. Sci. Technol. B (2)

L. C. Chao, B. K. Lee, C. J. Chi, J. Cheng, T. Chyr, A. J. Steckl, “Rare earth FIB implantation utilizing Er and Pr liquid alloy ion sources,” J. Vac. Sci. Technol. B 17, 2791–2794 (1999).
[CrossRef]

L. C. Chao, A. J. Steckl, “Development of an Er-Ni liquid metal ion source,” J. Vac. Sci. Technol. B 17, 1051–1053 (1999).

Jpn. J. Appl. Phys. (1)

K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 37, 2274–2278 (1998).
[CrossRef]

MRS Bull. (1)

A. J. Steckl, J. M. Zavada, “Optoelectronic properties and applications of rare-earth-doped GaN,” MRS Bull. 24(9), 33–38 (1999).

Nucl. Instrum. Methods Phys. Res. B (1)

J. Qiu, K. Miura, H. Inouye, J. Nishii, K. Hirao, “Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser,” Nucl. Instrum. Methods Phys. Res. B 141, 699–703 (1998).
[CrossRef]

Opt. Commun. (1)

I. F. Elder, M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, TM,Ho:YAP and Tm,Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4, 370–375 (1995).
[CrossRef]

Science (2)

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Solid-State Electron. (1)

J. M. Zavada, D. Zhang, “Luminescence properties of erbium in III-V compound semiconductors,” Solid-State Electron. 38, 1285–1293 (1995).
[CrossRef]

Other (1)

S. C. Esener, M. H. Kryder, W. D. Doyle, M. Keshner, M. Mansuripur, D. A. Thompson, The Future of Data Storage Technologies (World Technology Division, International Technology Research Institute, Loyola College, Baltimore, Md., 1999), Chap. 1; http://itri.loyola.edu/hdmen/toc.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of optical characterization setup for upconversion optical memory storage based on Er-implanted GaN. GPIB, general-purpose interface bus.

Fig. 2
Fig. 2

Er energy levels and upconversion processes for FIB-implanted GaN:Er.

Fig. 3
Fig. 3

Upconversion spectra under single and double laser pumping from FIB-implanted GaN:Er with 1-h furnace annealing (FA) at 1100 °C in N2.

Fig. 4
Fig. 4

Multiple-level storage capacity as a function of a FIB Er dose into GaN.

Fig. 5
Fig. 5

Upconversion intensity across the edge of FIB-implanted GaN:Er samples. FIB dose is 1015/cm2. Furnace annealing at 1100 °C for a duration of (a) 100 s, (b) 1 h.

Fig. 6
Fig. 6

Optical memory stored information in a FIB-implanted Er pattern: (a) reflected light image of a 3 × 3 array by optical microscopy; (b) upconversion image of 2 × 2 array, pumped with a 1000-nm laser; (c) scanned intensity profile of 2 × 2 array, pumped with a 1000-nm laser. The nominal bit area is 2 µm × 3 µm with a center-to-center spacing of 10 µm.

Fig. 7
Fig. 7

Upconversion signal from a linear scan across a FIB-implanted GaN:Er region, pumped by both 840- and 1000-nm lasers.

Fig. 8
Fig. 8

Upconversion signal from a FIB Er-implanted rectangular pattern, pumped with a 840-nm laser. Each set contains rectangles with nominal values of a 2-, 1-, and 0.5-µm width at spacings of 5, 10, and 15 µm.

Metrics