Abstract

The use of an on-line monitoring method based on photoelasticity techniques for the fabrication of micro-optical components by means of controlled laser heating is described. From this description it is possible to show in real time the mechanical stresses that form the microelement. A new parameter, stressed area, is introduced that quantifies the stresses of a microelement during its fabrication, facilitating a deeper understanding of the physical phenomena involved in the process as well as being a useful test of quality. It also permits the stress produced in the manufacturing process and the optical properties of the final microelement to be correlated. The results for several microlenses monitored with this technique are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Herzig, ed., Micro-Optics: Elements, Systems and Applications (Taylor & Francis, London, 1997).
  2. J. Göttert, M. Fischer, A. Müller, “High-aperture surface relief microlenses fabricated by x-ray lithography and melting,” in Proceedings of Conference on Microlens Arrays (European Optical Society, Teddington, UK, 1995), pp. 21–25.
  3. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [CrossRef] [PubMed]
  4. N. F. Borrelli, D. L. Morse, “Microlens arrays produced by a photolytic technique,” Appl. Opt. 27, 476–479 (1988).
    [CrossRef] [PubMed]
  5. D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” in Microlens Arrays, M. C. Hutley, ed., Vol. 30 of IOP Short Meetings Series (Institute of Physics, Bristol, UK, 1991), pp. 23–34.
  6. S. Lazare, J. Lopez, J. Turlet, M. Kufner, S. Kufner, P. Chavel, “Microlenses fabricated by ultraviolet excimer laser irradiation of poly(methyl methacrylate) followed by styrene diffusion,” Appl. Opt. 35, 4471–4475 (1996).
    [CrossRef] [PubMed]
  7. X. Wang, J. R. Leger, R. H. Rediker, “Rapid fabrication of diffractive optical elements by use of image-based excimer laser ablation,” Appl. Opt. 36, 4660–4665 (1997).
  8. M. C. Hutley, ed., Microlens Arrays, Vol. 30 of IOP Short Meetings Series (Institute of Physics, Bristol, UK, 1991).
  9. S. Haselbeck, H. Schreiber, J. Schwiderand, N. Streibl, “Microlenses fabricated by melting photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
    [CrossRef]
  10. B. P. Keyworth, D. J. Corazza, J. N. McMullin, L. Mabbott, “Single-step fabrication of refractive microlens arrays,” Appl. Opt. 36, 2198–2202 (1997).
    [CrossRef] [PubMed]
  11. S. Calixto, Z. Malacara, “Micromirror fabrication using dye-doped plastic,” Opt. Eng. 37, 2320–2323 (1998).
    [CrossRef]
  12. V. P. Veiko, Y. B. Yakovlev, “Physical fundamentals of laser forming of micro-optical components,” Opt. Eng. 33, 3567–3571 (1994).
    [CrossRef]
  13. M. Wakaki, Y. Komachi, G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37, 627–631 (1998).
    [CrossRef]
  14. G. Beadie, N. M. Lawandy, “Single-step laser fabrication of refractive microlenses in semiconductor-doped glasses,” Opt. Lett. 20, 2153–2155 (1995).
  15. S. Calixto, G. Paez Padilla, “Micromirrors and microlenses fabricated on polymer materials by means of infrared radiation,” Appl. Opt. 35, 6126–6130 (1996).
    [CrossRef] [PubMed]
  16. A. C. Tam, I. K. Pour, P. Baumgart, “New laser texturing process of magnetic disks for stiction reduction,” in Laser Processing of Materials and Industrial Applications, S.-S. Deng, S. C. Wang, eds., Proc. SPIE2888, 97–107 (1996).
  17. J. E. Juliá, R. Estrela, “On-line monitoring of the manufacture process of optical microelements by laser heating,” in Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics IV, Proc. SPIE (in press).
  18. J. W. Dally, W. F. Riley, Experimental Stress Analysis (McGraw-Hill, Kogakusha, Tokyo, 1978).
  19. F. Dahmani, A. W. Schnid, J. C. Lambropoulos, S. Burns, “Dependence of birrefrigence and residual stress near laser-induced cracks in fused silica on laser fluence and on laser-pulse number,” Appl. Opt. 37, 7772–7784 (1998).
    [CrossRef]
  20. A. R. Boyain y Goitia, A. N. Starodumov, D. Monzon-Hernandez, V. N. Filippov, P. Gavrilovic, “Birrefrigence measurement in double-clad fiber lasers with large cross section,” Appl. Opt. 39, 2259–2263 (2000).
    [CrossRef]
  21. V. P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass-like materials,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
    [CrossRef]

2000 (1)

1998 (3)

1997 (2)

1996 (2)

1995 (1)

1994 (1)

V. P. Veiko, Y. B. Yakovlev, “Physical fundamentals of laser forming of micro-optical components,” Opt. Eng. 33, 3567–3571 (1994).
[CrossRef]

1993 (1)

S. Haselbeck, H. Schreiber, J. Schwiderand, N. Streibl, “Microlenses fabricated by melting photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

1988 (2)

Baumgart, P.

A. C. Tam, I. K. Pour, P. Baumgart, “New laser texturing process of magnetic disks for stiction reduction,” in Laser Processing of Materials and Industrial Applications, S.-S. Deng, S. C. Wang, eds., Proc. SPIE2888, 97–107 (1996).

Beadie, G.

Borrelli, N. F.

Boyain y Goitia, A. R.

Burns, S.

Calixto, S.

Chavel, P.

Connell, G. A. N.

Corazza, D. J.

Dahmani, F.

Dally, J. W.

J. W. Dally, W. F. Riley, Experimental Stress Analysis (McGraw-Hill, Kogakusha, Tokyo, 1978).

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” in Microlens Arrays, M. C. Hutley, ed., Vol. 30 of IOP Short Meetings Series (Institute of Physics, Bristol, UK, 1991), pp. 23–34.

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” in Microlens Arrays, M. C. Hutley, ed., Vol. 30 of IOP Short Meetings Series (Institute of Physics, Bristol, UK, 1991), pp. 23–34.

Estrela, R.

J. E. Juliá, R. Estrela, “On-line monitoring of the manufacture process of optical microelements by laser heating,” in Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics IV, Proc. SPIE (in press).

Filippov, V. N.

Fischer, M.

J. Göttert, M. Fischer, A. Müller, “High-aperture surface relief microlenses fabricated by x-ray lithography and melting,” in Proceedings of Conference on Microlens Arrays (European Optical Society, Teddington, UK, 1995), pp. 21–25.

Gavrilovic, P.

Göttert, J.

J. Göttert, M. Fischer, A. Müller, “High-aperture surface relief microlenses fabricated by x-ray lithography and melting,” in Proceedings of Conference on Microlens Arrays (European Optical Society, Teddington, UK, 1995), pp. 21–25.

Haselbeck, S.

S. Haselbeck, H. Schreiber, J. Schwiderand, N. Streibl, “Microlenses fabricated by melting photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” in Microlens Arrays, M. C. Hutley, ed., Vol. 30 of IOP Short Meetings Series (Institute of Physics, Bristol, UK, 1991), pp. 23–34.

Juliá, J. E.

J. E. Juliá, R. Estrela, “On-line monitoring of the manufacture process of optical microelements by laser heating,” in Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics IV, Proc. SPIE (in press).

Kanai, G.

Keyworth, B. P.

Komachi, Y.

Kromin, A. K.

V. P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass-like materials,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
[CrossRef]

Kufner, M.

Kufner, S.

Lambropoulos, J. C.

Lawandy, N. M.

Lazare, S.

Leger, J. R.

Lopez, J.

Mabbott, L.

Malacara, Z.

S. Calixto, Z. Malacara, “Micromirror fabrication using dye-doped plastic,” Opt. Eng. 37, 2320–2323 (1998).
[CrossRef]

McMullin, J. N.

Monzon-Hernandez, D.

Morse, D. L.

Müller, A.

J. Göttert, M. Fischer, A. Müller, “High-aperture surface relief microlenses fabricated by x-ray lithography and melting,” in Proceedings of Conference on Microlens Arrays (European Optical Society, Teddington, UK, 1995), pp. 21–25.

Padilla, G. Paez

Popovic, Z. D.

Pour, I. K.

A. C. Tam, I. K. Pour, P. Baumgart, “New laser texturing process of magnetic disks for stiction reduction,” in Laser Processing of Materials and Industrial Applications, S.-S. Deng, S. C. Wang, eds., Proc. SPIE2888, 97–107 (1996).

Rediker, R. H.

Riley, W. F.

J. W. Dally, W. F. Riley, Experimental Stress Analysis (McGraw-Hill, Kogakusha, Tokyo, 1978).

Schnid, A. W.

Schreiber, H.

S. Haselbeck, H. Schreiber, J. Schwiderand, N. Streibl, “Microlenses fabricated by melting photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Schwiderand, J.

S. Haselbeck, H. Schreiber, J. Schwiderand, N. Streibl, “Microlenses fabricated by melting photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Sprague, R. A.

Starodumov, A. N.

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” in Microlens Arrays, M. C. Hutley, ed., Vol. 30 of IOP Short Meetings Series (Institute of Physics, Bristol, UK, 1991), pp. 23–34.

Streibl, N.

S. Haselbeck, H. Schreiber, J. Schwiderand, N. Streibl, “Microlenses fabricated by melting photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Tam, A. C.

A. C. Tam, I. K. Pour, P. Baumgart, “New laser texturing process of magnetic disks for stiction reduction,” in Laser Processing of Materials and Industrial Applications, S.-S. Deng, S. C. Wang, eds., Proc. SPIE2888, 97–107 (1996).

Turlet, J.

Veiko, V. P.

V. P. Veiko, Y. B. Yakovlev, “Physical fundamentals of laser forming of micro-optical components,” Opt. Eng. 33, 3567–3571 (1994).
[CrossRef]

V. P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass-like materials,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
[CrossRef]

Wakaki, M.

Wang, X.

Yakovlev, E. B.

V. P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass-like materials,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
[CrossRef]

Yakovlev, Y. B.

V. P. Veiko, Y. B. Yakovlev, “Physical fundamentals of laser forming of micro-optical components,” Opt. Eng. 33, 3567–3571 (1994).
[CrossRef]

Appl. Opt. (9)

Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
[CrossRef] [PubMed]

N. F. Borrelli, D. L. Morse, “Microlens arrays produced by a photolytic technique,” Appl. Opt. 27, 476–479 (1988).
[CrossRef] [PubMed]

S. Lazare, J. Lopez, J. Turlet, M. Kufner, S. Kufner, P. Chavel, “Microlenses fabricated by ultraviolet excimer laser irradiation of poly(methyl methacrylate) followed by styrene diffusion,” Appl. Opt. 35, 4471–4475 (1996).
[CrossRef] [PubMed]

X. Wang, J. R. Leger, R. H. Rediker, “Rapid fabrication of diffractive optical elements by use of image-based excimer laser ablation,” Appl. Opt. 36, 4660–4665 (1997).

B. P. Keyworth, D. J. Corazza, J. N. McMullin, L. Mabbott, “Single-step fabrication of refractive microlens arrays,” Appl. Opt. 36, 2198–2202 (1997).
[CrossRef] [PubMed]

S. Calixto, G. Paez Padilla, “Micromirrors and microlenses fabricated on polymer materials by means of infrared radiation,” Appl. Opt. 35, 6126–6130 (1996).
[CrossRef] [PubMed]

M. Wakaki, Y. Komachi, G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37, 627–631 (1998).
[CrossRef]

F. Dahmani, A. W. Schnid, J. C. Lambropoulos, S. Burns, “Dependence of birrefrigence and residual stress near laser-induced cracks in fused silica on laser fluence and on laser-pulse number,” Appl. Opt. 37, 7772–7784 (1998).
[CrossRef]

A. R. Boyain y Goitia, A. N. Starodumov, D. Monzon-Hernandez, V. N. Filippov, P. Gavrilovic, “Birrefrigence measurement in double-clad fiber lasers with large cross section,” Appl. Opt. 39, 2259–2263 (2000).
[CrossRef]

Opt. Eng. (3)

S. Calixto, Z. Malacara, “Micromirror fabrication using dye-doped plastic,” Opt. Eng. 37, 2320–2323 (1998).
[CrossRef]

V. P. Veiko, Y. B. Yakovlev, “Physical fundamentals of laser forming of micro-optical components,” Opt. Eng. 33, 3567–3571 (1994).
[CrossRef]

S. Haselbeck, H. Schreiber, J. Schwiderand, N. Streibl, “Microlenses fabricated by melting photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Opt. Lett. (1)

Other (8)

V. P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass-like materials,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
[CrossRef]

A. C. Tam, I. K. Pour, P. Baumgart, “New laser texturing process of magnetic disks for stiction reduction,” in Laser Processing of Materials and Industrial Applications, S.-S. Deng, S. C. Wang, eds., Proc. SPIE2888, 97–107 (1996).

J. E. Juliá, R. Estrela, “On-line monitoring of the manufacture process of optical microelements by laser heating,” in Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics IV, Proc. SPIE (in press).

J. W. Dally, W. F. Riley, Experimental Stress Analysis (McGraw-Hill, Kogakusha, Tokyo, 1978).

M. C. Hutley, ed., Microlens Arrays, Vol. 30 of IOP Short Meetings Series (Institute of Physics, Bristol, UK, 1991).

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” in Microlens Arrays, M. C. Hutley, ed., Vol. 30 of IOP Short Meetings Series (Institute of Physics, Bristol, UK, 1991), pp. 23–34.

H. P. Herzig, ed., Micro-Optics: Elements, Systems and Applications (Taylor & Francis, London, 1997).

J. Göttert, M. Fischer, A. Müller, “High-aperture surface relief microlenses fabricated by x-ray lithography and melting,” in Proceedings of Conference on Microlens Arrays (European Optical Society, Teddington, UK, 1995), pp. 21–25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Monitoring images of a microlens fabricated with a CO2 laser with an irradiance of 7.6 × 103 W/cm2 and an irradiance τ of 5 s for irradiation times (in seconds) of (a) 0.1, (b) 0.2, (c) 0.6, (d) 1.0, (e) 1.8, (f) 2.6, (g) 3.8, (h) 5.0, (i) 5.2, (j) 5.4, (k) 5.6, (l) 7.0.

Fig. 3
Fig. 3

Direct monitoring images of a microlens fabricated with a CO2 laser with an irradiance of 7.6 × 103 W/cm2 and a τ of 5 s (the images have been digitally modified to show frontal views) for irradiation times (in seconds) of (a) 1, (b) 3, (c) 5.

Fig. 4
Fig. 4

SA versus τ for microlenses made with a CO2 laser over a 100-µm-thick microscope slide during the fabrication: asterisks, 6.4 × 103 W/cm2; open circles, 9.4 × 103 W/cm2; crosses, 1.1 × 104 W/cm2. τ = 15 s. SA values are normalized.

Fig. 5
Fig. 5

Comparison of SA and D for a microlens made with a CO2 laser over a 100-µm-thick microscope slide during the fabrication. Irradiance, 6.4 × 103 W/cm2; τ = 15 s. SA and D are normalized.

Fig. 6
Fig. 6

Comparison of F#M and F#E for microlenses made with a CO2 laser over a 100-µm-thick microscope slide and an irradiance of 9.4 × 103 W/cm2. The two curves are normalized.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f=D28n-1S,
F#=D8n-1S.
F#τα Dτ28n-1SAτ.

Metrics