Abstract

We propose a method of synthesizing computer-generated holograms of real-life three-dimensional (3-D) objects. An ordinary digital camera illuminated by incoherent white light records several projections of the 3-D object from different points of view. The recorded data are numerically processed to yield a two-dimensional complex function, which is then encoded as a computer-generated hologram. When this hologram is illuminated by a plane wave, a 3-D real image of the object is reconstructed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscope principle,” Nature 161, 777–779 (1948).
    [CrossRef]
  2. D. J. DeBitetto, “Holographic panoramic stereograms synthesized from white light recordings,” Appl. Opt. 8, 1740–1741 (1969).
    [CrossRef] [PubMed]
  3. P. Hariharan, Optical Holography, 2nd ed. (Cambridge U. Press, New York, 1996), Chap. 8, p. 139.
  4. H. J. Caulfield, Handbook of Optical Holography (Academic, New York, 1979), Chap. 5, p. 211.
  5. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 9, p. 326.
  6. Ref. 4, Chap. 3, p. 139.
  7. Ref. 5, Chap. 5, p. 108.
  8. D. L. Marks, D. J. Brady, “Three-dimensional source reconstruction with a scanned pinhole camera,” Opt. Lett. 23, 820–822 (1998).
    [CrossRef]
  9. M. R. Fetterman, E. Tan, L. Ying, R. A. Stack, D. L. Marks, S. Feller, E. Cull, J. Sullivan, D. C. Munson, S. T. Thoroddsen, D. J. Brady, “Tomographic imaging of foam,” Opt. Express 7, 186–197 (2000), http://www.opticsexpress.org .
  10. J. Rosen, “Three-dimensional joint transform correlator,” Appl. Opt. 37, 7538–7544 (1998).
    [CrossRef]
  11. Ref. 5 Chap. 5, p. 104.
  12. J. Rosen, B. Salik, A. Yariv, H.-K. Liu, “Pseudo-nondiffracting slitlike beam and its analogy to the pseudo nondispersing pulse,” Opt. Lett. 20, 423–425 (1995).
    [CrossRef] [PubMed]
  13. O. Bryngdahl, F. Wyrowski, “Digital holography—computer-generated holograms,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1990), Vol. 28, pp. 1–86.
  14. Ref. 5, Chap. 8, p. 273.
  15. B. Salik, J. Rosen, A. Yariv, “One-dimensional beam shaping,” J. Opt. Soc. Am. A 12, 1702–1706 (1995).
    [CrossRef]
  16. T. Yatagi, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15, 2722–2729 (1976).
    [CrossRef]
  17. L. P. Yaroslavskii, N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, New York, 1980), Chap. 1, p. 87.
  18. C. D. Cameron, D. A. Pain, M. Stanley, C. W. Slinger, “Computational challenges of emerging novel true 3D holographic displays,” in Critical Technologies for the Future of Computing, S. Bains, L. J. Irakliotis, eds., Proc SPIE4109, 129–140 (2000).

2000 (1)

1998 (2)

1995 (2)

1976 (1)

1969 (1)

1948 (1)

D. Gabor, “A new microscope principle,” Nature 161, 777–779 (1948).
[CrossRef]

Brady, D. J.

Bryngdahl, O.

O. Bryngdahl, F. Wyrowski, “Digital holography—computer-generated holograms,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1990), Vol. 28, pp. 1–86.

Cameron, C. D.

C. D. Cameron, D. A. Pain, M. Stanley, C. W. Slinger, “Computational challenges of emerging novel true 3D holographic displays,” in Critical Technologies for the Future of Computing, S. Bains, L. J. Irakliotis, eds., Proc SPIE4109, 129–140 (2000).

Caulfield, H. J.

H. J. Caulfield, Handbook of Optical Holography (Academic, New York, 1979), Chap. 5, p. 211.

Cull, E.

DeBitetto, D. J.

Feller, S.

Fetterman, M. R.

Gabor, D.

D. Gabor, “A new microscope principle,” Nature 161, 777–779 (1948).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 9, p. 326.

Hariharan, P.

P. Hariharan, Optical Holography, 2nd ed. (Cambridge U. Press, New York, 1996), Chap. 8, p. 139.

Liu, H.-K.

Marks, D. L.

Merzlyakov, N. S.

L. P. Yaroslavskii, N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, New York, 1980), Chap. 1, p. 87.

Munson, D. C.

Pain, D. A.

C. D. Cameron, D. A. Pain, M. Stanley, C. W. Slinger, “Computational challenges of emerging novel true 3D holographic displays,” in Critical Technologies for the Future of Computing, S. Bains, L. J. Irakliotis, eds., Proc SPIE4109, 129–140 (2000).

Rosen, J.

Salik, B.

Slinger, C. W.

C. D. Cameron, D. A. Pain, M. Stanley, C. W. Slinger, “Computational challenges of emerging novel true 3D holographic displays,” in Critical Technologies for the Future of Computing, S. Bains, L. J. Irakliotis, eds., Proc SPIE4109, 129–140 (2000).

Stack, R. A.

Stanley, M.

C. D. Cameron, D. A. Pain, M. Stanley, C. W. Slinger, “Computational challenges of emerging novel true 3D holographic displays,” in Critical Technologies for the Future of Computing, S. Bains, L. J. Irakliotis, eds., Proc SPIE4109, 129–140 (2000).

Sullivan, J.

Tan, E.

Thoroddsen, S. T.

Wyrowski, F.

O. Bryngdahl, F. Wyrowski, “Digital holography—computer-generated holograms,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1990), Vol. 28, pp. 1–86.

Yariv, A.

Yaroslavskii, L. P.

L. P. Yaroslavskii, N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, New York, 1980), Chap. 1, p. 87.

Yatagi, T.

Ying, L.

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

Nature (1)

D. Gabor, “A new microscope principle,” Nature 161, 777–779 (1948).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (10)

Ref. 5 Chap. 5, p. 104.

P. Hariharan, Optical Holography, 2nd ed. (Cambridge U. Press, New York, 1996), Chap. 8, p. 139.

H. J. Caulfield, Handbook of Optical Holography (Academic, New York, 1979), Chap. 5, p. 211.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 9, p. 326.

Ref. 4, Chap. 3, p. 139.

Ref. 5, Chap. 5, p. 108.

O. Bryngdahl, F. Wyrowski, “Digital holography—computer-generated holograms,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1990), Vol. 28, pp. 1–86.

Ref. 5, Chap. 8, p. 273.

L. P. Yaroslavskii, N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, New York, 1980), Chap. 1, p. 87.

C. D. Cameron, D. A. Pain, M. Stanley, C. W. Slinger, “Computational challenges of emerging novel true 3D holographic displays,” in Critical Technologies for the Future of Computing, S. Bains, L. J. Irakliotis, eds., Proc SPIE4109, 129–140 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the holographic recording and reconstructing systems. SLM, spatial light modulator.

Fig. 2
Fig. 2

Equivalent optical systems for (a) the digital computation performed on each projection and (b) the hologram recording.

Fig. 3
Fig. 3

Sixteen projections of the sixty-five projections of the input scene taken by the camera from various viewpoints.

Fig. 4
Fig. 4

(a) Magnitude (the maximum value is darkest) and (b) phase angle (π is white and -π is black) of the hologram recorded and computed in the experiment. (c) Central part of the CGH, computed by Eq. (10) from the complex function shown in (a) and (b).

Fig. 5
Fig. 5

Simulation results from the hologram shown in Fig. 4(c) at the vicinity of the back focal point of lens L u for three transverse planes at (a) z o = -9f, (b) z o = 6f, (c) z o = 25f.

Fig. 6
Fig. 6

Experimental results from the hologram shown in Fig. 4(c) at the vicinity of the back focal point of L u for three transverse planes at (a) z o = -0.5 cm, (b) z o = 2.5 cm, (c) z o = 6 cm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

xi, yi=x cos θi+z sin θi, y.
o3u, v, θi    o2xi, yi, θiexp-i2πuxi/λf×δv-yidxidyi,
o3u, v, θi  o1x, y, zexp-i2πuxi/λf×δv-yiΔxΔyΔz.
o3u, v, θi  o1x, y, zexp-i2πux cos θi+uz sin θi/λfδv-yΔxΔyΔz.
o3u, v, θi   o1x, y, zexp-i2πux cos θi+uz sin θi/λfδv-ydxdydz.
hu, v=o3u, v, θi=aucos θi=1sin θi=θi=au=o1x, y, zδv-yexp-i2πux+au2z/λfdxdydz.
g1u, v=Ao1x, y, zδv-y×exp-i2πλuxf-u2z2f2ΔxΔyΔz,
gu, v=A  o1x, y, zδv-y×exp-i2πλuxf-u2z2f2dxdydz.
hu, v   o1x, y, -z2afδv-y×exp-i2πλuxf-u2z2f2dxdydz.
hru, v=0.51+Rehu, v×expi2πλfdxu+dyv,

Metrics