Abstract

A comparison of several endoscopes as object image carriers in pulsed digital holography is presented. Three multicore flexible fiber endoscopes of different spatial resolution and one rigid endoscope are investigated. The four endoscopes are integrated in a setup for the recording of digital holograms on a CCD camera. A double-pulsed ruby laser is used as the light source. A spatial carrier is introduced by an off-axis reference beam, which permits quantitative evaluation of the phase difference between two holograms recorded with a short time separation (5–600 µs). From reported studies it may be inferred that the quality of the phase maps so derived from digital holographic interferometry has a strong correlation to the spatial resolution of the multicore fiber used in these endoscopes. With the endoscopic technique combined with pulsed digital holography a number of useful applications (in areas such as medical endoscopy, micromechanics, and microelectronics) are envisaged for which access to the objects of interest is otherwise difficult.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Hadbawnik, “Holographische endoskopie,” Optik (Stuttgart) 45, 21–38 (1976).
  2. M. Yonemura, T. Nishisaka, H. Machida, “Endoscopic hologram interferometry using fiber optics,” Appl. Opt. 20, 1664–1667 (1981).
    [CrossRef] [PubMed]
  3. K. A. Stetson, W. R. Brohinsky, “Electrooptic holography and its application to hologram interferometry,” Appl. Opt. 24, 3631–3637 (1985).
    [CrossRef] [PubMed]
  4. R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
    [CrossRef]
  5. G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
    [CrossRef]
  6. G. von Bally, B. Kemper, A. Merker, S. Lai, “A new dynamic endoscopic holographic interferometer for in-vivo medical imaging metrology,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, eds., Proc. SPIE3749, 393–394 (1999).
  7. S. Schedin, G. Pedrini, H. J. Tiziani, F. M. Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
    [CrossRef]
  8. S. Schedin, G. Pedrini, H. J. Tiziani, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39, 2853–2857 (2000).
    [CrossRef]
  9. O. Coquoz, R. Conde, F. Talebou, C. Depeursinge, “Performances of endoscopic holography with a multicore optical fiber,” Appl. Opt. 34, 7186–7193 (1995).
    [CrossRef] [PubMed]
  10. R. J. Collier, C. B. Burckhard, L. H. Lin, Optical Holography (Academic, New York, 1971).
  11. G. Pedrini, P. Fröning, H. J. Tiziani, M. E. Gusev, “Pulsed digital holography for high speed contouring that uses a two-wavelength method,” Appl. Opt. 38, 3460–3467 (1999).
    [CrossRef]

2000

1999

S. Schedin, G. Pedrini, H. J. Tiziani, F. M. Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

G. Pedrini, P. Fröning, H. J. Tiziani, M. E. Gusev, “Pulsed digital holography for high speed contouring that uses a two-wavelength method,” Appl. Opt. 38, 3460–3467 (1999).
[CrossRef]

1997

G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

1995

1992

R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
[CrossRef]

1985

1981

1976

D. Hadbawnik, “Holographische endoskopie,” Optik (Stuttgart) 45, 21–38 (1976).

Brohinsky, W. R.

Burckhard, C. B.

R. J. Collier, C. B. Burckhard, L. H. Lin, Optical Holography (Academic, New York, 1971).

Collier, R. J.

R. J. Collier, C. B. Burckhard, L. H. Lin, Optical Holography (Academic, New York, 1971).

Conde, R.

Coquoz, O.

Depeursinge, C.

Fröning, P.

Gusev, M. E.

Hadbawnik, D.

D. Hadbawnik, “Holographische endoskopie,” Optik (Stuttgart) 45, 21–38 (1976).

Kemper, B.

G. von Bally, B. Kemper, A. Merker, S. Lai, “A new dynamic endoscopic holographic interferometer for in-vivo medical imaging metrology,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, eds., Proc. SPIE3749, 393–394 (1999).

Lai, S.

G. von Bally, B. Kemper, A. Merker, S. Lai, “A new dynamic endoscopic holographic interferometer for in-vivo medical imaging metrology,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, eds., Proc. SPIE3749, 393–394 (1999).

Lin, L. H.

R. J. Collier, C. B. Burckhard, L. H. Lin, Optical Holography (Academic, New York, 1971).

Machida, H.

Merker, A.

G. von Bally, B. Kemper, A. Merker, S. Lai, “A new dynamic endoscopic holographic interferometer for in-vivo medical imaging metrology,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, eds., Proc. SPIE3749, 393–394 (1999).

Nishisaka, T.

Pedrini, G.

Santoyo, F. M.

S. Schedin, G. Pedrini, H. J. Tiziani, F. M. Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

Schedin, S.

S. Schedin, G. Pedrini, H. J. Tiziani, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39, 2853–2857 (2000).
[CrossRef]

S. Schedin, G. Pedrini, H. J. Tiziani, F. M. Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

Spooren, R.

R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
[CrossRef]

Stetson, K. A.

Talebou, F.

Tiziani, H. J.

von Bally, G.

G. von Bally, B. Kemper, A. Merker, S. Lai, “A new dynamic endoscopic holographic interferometer for in-vivo medical imaging metrology,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, eds., Proc. SPIE3749, 393–394 (1999).

Yonemura, M.

Zou, Y.

G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

Appl. Opt.

Opt. Commun.

S. Schedin, G. Pedrini, H. J. Tiziani, F. M. Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

Opt. Eng.

R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
[CrossRef]

Opt. Lasers Eng.

G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

Optik (Stuttgart)

D. Hadbawnik, “Holographische endoskopie,” Optik (Stuttgart) 45, 21–38 (1976).

Other

R. J. Collier, C. B. Burckhard, L. H. Lin, Optical Holography (Academic, New York, 1971).

G. von Bally, B. Kemper, A. Merker, S. Lai, “A new dynamic endoscopic holographic interferometer for in-vivo medical imaging metrology,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, eds., Proc. SPIE3749, 393–394 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The optical setup: APs, apertures; BSs, beam splitters; Ls, positive lenses; MO, microscope objective; R, reference beam.

Fig. 2
Fig. 2

Cross section of a multicore optical fiber.

Fig. 3
Fig. 3

Wrapped phase maps showing static deformation (tilt) of a metal plate for endoscope 1. (a) Raw phase data, (b) filtered phase data.

Fig. 4
Fig. 4

Wrapped phase maps showing static deformation of a metal plate for endoscope 2. (a) Raw data, (b) filtered phase data.

Fig. 5
Fig. 5

Wrapped phase maps showing static deformation of a metal plate for endoscope 3. (a) Raw data, (b) filtered phase data.

Fig. 6
Fig. 6

Wrapped phase maps showing static deformation of a metal plate for endoscope 4. (a) Raw data, (b) filtered phase data.

Fig. 7
Fig. 7

Wrapped phase maps showing vibration at 2010 Hz of a metal sheet. (a) Flexible fiber endoscope 1; resolution, 10,000 fiber elements. (b) Flexible fiber endoscope 2; resolution, 35,000 fiber elements. (c) Flexible fiber endoscope 3; resolution, 50,400 fiber elements. (d) Rigid endoscope 4.

Tables (1)

Tables Icon

Table 1 Specifications of the Endoscopes Tested

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IxH, yH=|RxH, yH|2+|UxH, yH|2+RxH, yHU*xH, yH+R*xH, yHUxH, yH,
Δϕ=arctanReU1ImU2-ImU1ReU2ImU1ImU2+ReU1ReU2.

Metrics