Abstract

A distributed-feedback (DFB) diode laser radiating at 1.53 µm was used for photoacoustic detection of ammonia molecules in the gas phase under flow conditions. The influence of the adsorption–desorption processes that occur at the cell and tube walls on the measured gas concentration was studied. Dramatic differences in the adsorption behavior of a metal and a polypropylene cell are demonstrated. Simulations of the gas flow and adsorption–desorption processes yield the conditions that must be fulfilled for accurate concentration measurements in trace-gas analysis of polar molecules.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Brewer, C. W. Bruce, “Photoacoustic spectroscopy of NH3 at the 9 µm and 10 µm 12C16O2 laser wavelength,” Appl. Opt. 17, 3746–3749 (1978).
    [CrossRef] [PubMed]
  2. R. A. Rooth, A. J. L. Verhage, L. W. Wouters, “Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide,” Appl. Opt. 29, 3643–3653 (1990).
    [CrossRef] [PubMed]
  3. S. M. Beck, “Cell coatings to minimize sample (NH3 and N2H4) adsorption for low-level photoacoustic detection,” Appl. Opt. 24, 1761–1763 (1985).
    [CrossRef]
  4. H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bicanic, “The adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 196–200.
    [CrossRef]
  5. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
    [CrossRef]
  6. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Cappasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Photoacoustic spectroscopy using quantum-cascade lasers,” Opt. Lett. 24, 178–180 (1999).
    [CrossRef]
  7. J. Henningsen, N. Melander, “Sensitive measurement of adsorption dynamics with nonresonant gas phase photoacoustics,” Appl. Opt. 36, 7037–7045 (1997).
    [CrossRef]
  8. J. Henningsen, N. Melander, “A photoacoustic study of adsorption,” in CP 463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, New York, 1999), p. 78.
  9. A. Miklós, P. Hess, Á. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in CP 463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, New York, 1999), p. 126.
  10. E. Fitzer, W. Fritz, G. Emig, Technische Chemie, 4th ed. (Springer-Verlag, Heidelberg, 1995), pp. 295–297.

1999

1998

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

1997

1990

1985

1978

Baer, D. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Baillargeon, J. N.

Beck, S. M.

Bicanic, D.

H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bicanic, “The adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 196–200.
[CrossRef]

Brewer, R. J.

Bruce, C. W.

Cappasso, F.

Chapman, W. B.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Cho, A. Y.

Emig, G.

E. Fitzer, W. Fritz, G. Emig, Technische Chemie, 4th ed. (Springer-Verlag, Heidelberg, 1995), pp. 295–297.

Feller, G. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Fitzer, E.

E. Fitzer, W. Fritz, G. Emig, Technische Chemie, 4th ed. (Springer-Verlag, Heidelberg, 1995), pp. 295–297.

Fritz, W.

E. Fitzer, W. Fritz, G. Emig, Technische Chemie, 4th ed. (Springer-Verlag, Heidelberg, 1995), pp. 295–297.

Gmachl, C.

Hanson, R. K.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Harren, F. J. M.

Henningsen, J.

J. Henningsen, N. Melander, “Sensitive measurement of adsorption dynamics with nonresonant gas phase photoacoustics,” Appl. Opt. 36, 7037–7045 (1997).
[CrossRef]

J. Henningsen, N. Melander, “A photoacoustic study of adsorption,” in CP 463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, New York, 1999), p. 78.

Hess, P.

A. Miklós, P. Hess, Á. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in CP 463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, New York, 1999), p. 126.

Hutchinson, A. L.

Jalink, H.

H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bicanic, “The adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 196–200.
[CrossRef]

Kamm, S.

A. Miklós, P. Hess, Á. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in CP 463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, New York, 1999), p. 126.

Melander, N.

J. Henningsen, N. Melander, “Sensitive measurement of adsorption dynamics with nonresonant gas phase photoacoustics,” Appl. Opt. 36, 7037–7045 (1997).
[CrossRef]

J. Henningsen, N. Melander, “A photoacoustic study of adsorption,” in CP 463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, New York, 1999), p. 78.

Mihalcea, R. M.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Miklós, A.

A. Miklós, P. Hess, Á. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in CP 463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, New York, 1999), p. 126.

Mohácsi, Á.

A. Miklós, P. Hess, Á. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in CP 463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, New York, 1999), p. 126.

Oomens, J.

Paldus, B. A.

Parker, D. H.

Rooth, R. A.

Sauren, H.

H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bicanic, “The adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 196–200.
[CrossRef]

Schäfer, S.

A. Miklós, P. Hess, Á. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in CP 463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, New York, 1999), p. 126.

Sivco, D. L.

Sneider, J.

A. Miklós, P. Hess, Á. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in CP 463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, New York, 1999), p. 126.

Spence, T. G.

Tonk, W.

H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bicanic, “The adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 196–200.
[CrossRef]

van Hove, B.

H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bicanic, “The adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 196–200.
[CrossRef]

Verhage, A. J. L.

Webber, M. E.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Wouters, L. W.

Zare, R. N.

Appl. Opt.

Appl. Phys. B

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Opt. Lett.

Other

J. Henningsen, N. Melander, “A photoacoustic study of adsorption,” in CP 463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, New York, 1999), p. 78.

A. Miklós, P. Hess, Á. Mohácsi, J. Sneider, S. Kamm, S. Schäfer, “Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 µm DFB diode laser,” in CP 463, Photoacoustic and Photothermal Phenomena: 10th International Conference, F. Scudieri, M. Bertolotti, eds. (American Institute of Physics, New York, 1999), p. 126.

E. Fitzer, W. Fritz, G. Emig, Technische Chemie, 4th ed. (Springer-Verlag, Heidelberg, 1995), pp. 295–297.

H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bicanic, “The adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 196–200.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Photoacoustic setup including a diode laser, two photoacoustic cells, amplifiers, and electronics. GPIB, general purpose interface bus; TEC, temperature controller; other abbreviations defined in text.

Fig. 2
Fig. 2

Cross sectional and three-dimensional (3D) views of the PP cell.

Fig. 3
Fig. 3

Gas-mixing system with mass-flow controllers and four-way valve.

Fig. 4
Fig. 4

Setup for bypass measurements with two photoacoustic cells and a three-way valve.

Fig. 5
Fig. 5

Study of desorption in a closed cell. First the cell was saturated with 96.9 ppmv of NH3 for 1 h; then the NH3 molecules in the gas volume and physisorbed molecules from the surface were driven out by flushing with pure nitrogen for 2 min. Afterward the cell was closed and the concentration was measured until equilibrium was reached.

Fig. 6
Fig. 6

Investigation of the flow dependency of the PA signal. The gas was switched between pure nitrogen and a mixture of 30 ppmv of ammonia in nitrogen. Before the measurement the surface of the cell was cleaned by heating and evacuating for 0.5 h. In the measurement with a flow of 80 sccm the slow increase of the signal approximates the behavior of a closed cell.

Fig. 7
Fig. 7

Flow noise in the PP cell. When the flow velocity was higher than a critical value (here ∼1000 sccm), the flow noise increased rapidly. Up to 800 sccm, no visible change in the signal could be detected.

Fig. 8
Fig. 8

Hysteresis measured with the brass cell by stepwise increase and decrease of the ammonia concentration.

Fig. 9
Fig. 9

Dependence of the signal rise on the flow velocity in the PP cell. The concentration was switched from 0 to 96.9 ppmv of ammonia. The temperature of the cell was 45 °C.

Fig. 10
Fig. 10

Comparison of measurements of 50.3 ppmv of ammonia with the PP cell (T = 45 °C) and with the brass cell (T = 22 °C). The flow was 500 sccm. Whereas the signal in the PP cell reached a constant value after less than 1 min, the signal in the brass cell still increased significantly after 40 min.

Fig. 11
Fig. 11

Measurement of the number of ammonia molecules per second (particle flow) that passed the brass cell. From the difference in the signal (gray area) the number of missing molecules ΔN can be calculated. The concentration was measured with the PP cell; the flow velocity was 500 sccm.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

cgt+u cgx+2rcwt=0,
cgt+ΦAxcgx+dSdVcwt=0,
cgmpt+ΦV cgmp=ΦV cgin-SVcwt,
-SVcwt,
cw/t=adsorption rate-desorption rate.
τ=V/Φ.
cginΦ  Scwt.
Nint=cginΦ  Scwt=Nadt.
PAt=PA-ΔPA exp-2tτ1+2tτ,
ΔN=0Ntt dt=pkT Φ 0 Δcitdt,
ciin=Vtrace gas/V=cginkT/p.
Nex=ciinpkT V.
Nads=0Ntt dt-Nex.
Δcw=Nads/S.
Ndes=pkT ciV
k1=A1 exp-EakT.
cginΦ>F Scwt,
cgin=NinV=pciinkT,
F=ciinpΦΔtkTSΔcw=ciin f>10,
f=fΦ,cwt0,cweqcgin,T,,p=105 Pa=1 bar,Φmax=1.3×10-5 m3/s =800 sccm,Δt=10 s= min,S=8×10-3 m2=80 cm2,T=300 K=27 °C.
ciin=5 ppmv,Δcw=2×1018 m-2=2×1014 cm-2,f=pΦΔtkTSΔcw=2.0×105=0.2 ppmv-1,F=1
ciin=100 ppmv,Δcw=4×1018 m-2=4×1014 cm-2,f=pΦΔtkTSΔcw=1.0×105=0.1 ppmv-1,F=10The adsorption effect is almost negligible.

Metrics