Abstract

We characterize a self-imaging multipass amplifier scheme that provides both high extraction efficiency and overall gain. A diode-pumped slab amplifier with a single-pass small-signal gain of 2.5 is used in a 16-pass mode to amplify an input pulse from 50 µJ to 50 mJ, extracting approximately 22% of the stored energy. A stimulated Brillouin-scattering phase-conjugate mirror provides isolation from amplified spontaneous emission, prevents gain depletion, and also ensures good beam quality. The system can be operated from 10 Hz to in excess of 450 Hz, with modest changes in the beam quality and energy. The scheme has the potential to be scaled to higher-energy and higher-power systems.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. V. Khoroshilov, I. V. Kryukov, P. G. Kryukov, A. V. Sharkov, “10kHz rate amplification of 40fs optical pulses at low pumping energy,” in Ultrafast Phenomena VI, Vol. 48 of the Springer-Verlag Series in Chemistry (Springer-Verlag, Berlin, 1988), pp. 22–23.
  2. P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, A. Brun, “High-efficiency Ti:sapphire amplifiers for a continuous-wave single-mode laser,” Opt. Lett. 16, 144–146 (1991).
    [PubMed]
  3. C. Le Blanc, G. Grillon, J. P. Chambaret, A. Migus, A. Antonetti, “Compact and efficient multipass Ti:sapphire system for femtosecond chirped pulse amplification at the terawatt level,” Opt. Lett. 18, 140–142 (1993).
    [CrossRef]
  4. R. L. Fork, F. A. Beisser, D. K. Fork, “Multi-pass optical amplifier using a double confocal resonator geometry,” Rev. Phys. Appl. 22, 1665–1671 (1987).
  5. O. Yu Nosach, V. I. Popovich, V. V. Ragulskii, F. S. Faizulov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16C, 617–621 (1972).
  6. D. A. Rockwell, “A review of phase conjugate solid state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
    [CrossRef]
  7. B. Ya. Zel’dovich, N. F. Pilipetskii, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985).
  8. N. F. Andreev, S. V. Kuznetsov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wavefront,” Sov. J. Quantum Electron. 22, 800–802 (1992).
    [CrossRef]
  9. W. K. Bischel, M. K. Reed, D. K. Negus, G. Frangineas, “System for minimising depolarization of a laser beam due to thermally induced birefringence,” U.S. patent5,504,763 (April1996).
  10. C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
    [CrossRef]
  11. A. F. Kornev, V. P. Pokrovskii, L. N. Soms, V. K. Stupnikov, “Scanlaser with an amplifying system,” Izv. Akad. Nauk SSSR Ser. Fiz. 55(2) 298–302 (1991).
  12. L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
    [CrossRef]
  13. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1976).
    [CrossRef]
  14. Onyx Optics Inc., 6551 Sierra Lane, Dublin, Calif.
  15. C. Stewen, M. Larionov, A. Giesen, K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 35–41.
  16. J.-L. Ayral, H. Rajbenbach, J. Montel, B. Loiseaux, A. Delboulbe, J.-P. Herriau, J.-P. Huignard, “Laser beam control with non-linear interactions,” Rev. Tech. Thomson-CSF 22(3) 377–429 (1990).
  17. A. M. Scott, H. Cook, A. P. G. Davies, “A 12-pass laser amplifier scheme for achieving efficient high gain amplification,” in Conference on Lasers and Electro-Optics, Vol. 39 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 51–52.

1995 (1)

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

1993 (1)

1992 (1)

N. F. Andreev, S. V. Kuznetsov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wavefront,” Sov. J. Quantum Electron. 22, 800–802 (1992).
[CrossRef]

1991 (2)

P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, A. Brun, “High-efficiency Ti:sapphire amplifiers for a continuous-wave single-mode laser,” Opt. Lett. 16, 144–146 (1991).
[PubMed]

A. F. Kornev, V. P. Pokrovskii, L. N. Soms, V. K. Stupnikov, “Scanlaser with an amplifying system,” Izv. Akad. Nauk SSSR Ser. Fiz. 55(2) 298–302 (1991).

1990 (1)

J.-L. Ayral, H. Rajbenbach, J. Montel, B. Loiseaux, A. Delboulbe, J.-P. Herriau, J.-P. Huignard, “Laser beam control with non-linear interactions,” Rev. Tech. Thomson-CSF 22(3) 377–429 (1990).

1988 (1)

D. A. Rockwell, “A review of phase conjugate solid state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

1987 (1)

R. L. Fork, F. A. Beisser, D. K. Fork, “Multi-pass optical amplifier using a double confocal resonator geometry,” Rev. Phys. Appl. 22, 1665–1671 (1987).

1972 (1)

O. Yu Nosach, V. I. Popovich, V. V. Ragulskii, F. S. Faizulov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16C, 617–621 (1972).

1963 (1)

L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Andreev, N. F.

N. F. Andreev, S. V. Kuznetsov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wavefront,” Sov. J. Quantum Electron. 22, 800–802 (1992).
[CrossRef]

Antonetti, A.

Ayral, J.-L.

J.-L. Ayral, H. Rajbenbach, J. Montel, B. Loiseaux, A. Delboulbe, J.-P. Herriau, J.-P. Huignard, “Laser beam control with non-linear interactions,” Rev. Tech. Thomson-CSF 22(3) 377–429 (1990).

Beisser, F. A.

R. L. Fork, F. A. Beisser, D. K. Fork, “Multi-pass optical amplifier using a double confocal resonator geometry,” Rev. Phys. Appl. 22, 1665–1671 (1987).

Bischel, W. K.

W. K. Bischel, M. K. Reed, D. K. Negus, G. Frangineas, “System for minimising depolarization of a laser beam due to thermally induced birefringence,” U.S. patent5,504,763 (April1996).

Brun, A.

Chambaret, J. P.

Contag, K.

C. Stewen, M. Larionov, A. Giesen, K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 35–41.

Cook, H.

A. M. Scott, H. Cook, A. P. G. Davies, “A 12-pass laser amplifier scheme for achieving efficient high gain amplification,” in Conference on Lasers and Electro-Optics, Vol. 39 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 51–52.

Dane, C. B.

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

Davies, A. P. G.

A. M. Scott, H. Cook, A. P. G. Davies, “A 12-pass laser amplifier scheme for achieving efficient high gain amplification,” in Conference on Lasers and Electro-Optics, Vol. 39 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 51–52.

Delboulbe, A.

J.-L. Ayral, H. Rajbenbach, J. Montel, B. Loiseaux, A. Delboulbe, J.-P. Herriau, J.-P. Huignard, “Laser beam control with non-linear interactions,” Rev. Tech. Thomson-CSF 22(3) 377–429 (1990).

Estable, F.

Faizulov, F. S.

O. Yu Nosach, V. I. Popovich, V. V. Ragulskii, F. S. Faizulov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16C, 617–621 (1972).

Fork, D. K.

R. L. Fork, F. A. Beisser, D. K. Fork, “Multi-pass optical amplifier using a double confocal resonator geometry,” Rev. Phys. Appl. 22, 1665–1671 (1987).

Fork, R. L.

R. L. Fork, F. A. Beisser, D. K. Fork, “Multi-pass optical amplifier using a double confocal resonator geometry,” Rev. Phys. Appl. 22, 1665–1671 (1987).

Frangineas, G.

W. K. Bischel, M. K. Reed, D. K. Negus, G. Frangineas, “System for minimising depolarization of a laser beam due to thermally induced birefringence,” U.S. patent5,504,763 (April1996).

Frantz, L. M.

L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Georges, P.

Giesen, A.

C. Stewen, M. Larionov, A. Giesen, K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 35–41.

Grangier, P.

Grillon, G.

Hackel, L. A.

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

Herriau, J.-P.

J.-L. Ayral, H. Rajbenbach, J. Montel, B. Loiseaux, A. Delboulbe, J.-P. Herriau, J.-P. Huignard, “Laser beam control with non-linear interactions,” Rev. Tech. Thomson-CSF 22(3) 377–429 (1990).

Huignard, J.-P.

J.-L. Ayral, H. Rajbenbach, J. Montel, B. Loiseaux, A. Delboulbe, J.-P. Herriau, J.-P. Huignard, “Laser beam control with non-linear interactions,” Rev. Tech. Thomson-CSF 22(3) 377–429 (1990).

Khazanov, E. A.

N. F. Andreev, S. V. Kuznetsov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wavefront,” Sov. J. Quantum Electron. 22, 800–802 (1992).
[CrossRef]

Khoroshilov, E. V.

E. V. Khoroshilov, I. V. Kryukov, P. G. Kryukov, A. V. Sharkov, “10kHz rate amplification of 40fs optical pulses at low pumping energy,” in Ultrafast Phenomena VI, Vol. 48 of the Springer-Verlag Series in Chemistry (Springer-Verlag, Berlin, 1988), pp. 22–23.

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1976).
[CrossRef]

Kornev, A. F.

A. F. Kornev, V. P. Pokrovskii, L. N. Soms, V. K. Stupnikov, “Scanlaser with an amplifying system,” Izv. Akad. Nauk SSSR Ser. Fiz. 55(2) 298–302 (1991).

Kryukov, I. V.

E. V. Khoroshilov, I. V. Kryukov, P. G. Kryukov, A. V. Sharkov, “10kHz rate amplification of 40fs optical pulses at low pumping energy,” in Ultrafast Phenomena VI, Vol. 48 of the Springer-Verlag Series in Chemistry (Springer-Verlag, Berlin, 1988), pp. 22–23.

Kryukov, P. G.

E. V. Khoroshilov, I. V. Kryukov, P. G. Kryukov, A. V. Sharkov, “10kHz rate amplification of 40fs optical pulses at low pumping energy,” in Ultrafast Phenomena VI, Vol. 48 of the Springer-Verlag Series in Chemistry (Springer-Verlag, Berlin, 1988), pp. 22–23.

Kuznetsov, S. V.

N. F. Andreev, S. V. Kuznetsov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wavefront,” Sov. J. Quantum Electron. 22, 800–802 (1992).
[CrossRef]

Larionov, M.

C. Stewen, M. Larionov, A. Giesen, K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 35–41.

Le Blanc, C.

Loiseaux, B.

J.-L. Ayral, H. Rajbenbach, J. Montel, B. Loiseaux, A. Delboulbe, J.-P. Herriau, J.-P. Huignard, “Laser beam control with non-linear interactions,” Rev. Tech. Thomson-CSF 22(3) 377–429 (1990).

Migus, A.

Montel, J.

J.-L. Ayral, H. Rajbenbach, J. Montel, B. Loiseaux, A. Delboulbe, J.-P. Herriau, J.-P. Huignard, “Laser beam control with non-linear interactions,” Rev. Tech. Thomson-CSF 22(3) 377–429 (1990).

Negus, D. K.

W. K. Bischel, M. K. Reed, D. K. Negus, G. Frangineas, “System for minimising depolarization of a laser beam due to thermally induced birefringence,” U.S. patent5,504,763 (April1996).

Neuman, W. A.

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

Nodvik, J. S.

L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Norton, M. A.

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

Palashov, O. V.

N. F. Andreev, S. V. Kuznetsov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wavefront,” Sov. J. Quantum Electron. 22, 800–802 (1992).
[CrossRef]

Pasmanik, G. A.

N. F. Andreev, S. V. Kuznetsov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wavefront,” Sov. J. Quantum Electron. 22, 800–802 (1992).
[CrossRef]

Pilipetskii, N. F.

B. Ya. Zel’dovich, N. F. Pilipetskii, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985).

Poizat, J. P.

Pokrovskii, V. P.

A. F. Kornev, V. P. Pokrovskii, L. N. Soms, V. K. Stupnikov, “Scanlaser with an amplifying system,” Izv. Akad. Nauk SSSR Ser. Fiz. 55(2) 298–302 (1991).

Popovich, V. I.

O. Yu Nosach, V. I. Popovich, V. V. Ragulskii, F. S. Faizulov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16C, 617–621 (1972).

Ragulskii, V. V.

O. Yu Nosach, V. I. Popovich, V. V. Ragulskii, F. S. Faizulov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16C, 617–621 (1972).

Rajbenbach, H.

J.-L. Ayral, H. Rajbenbach, J. Montel, B. Loiseaux, A. Delboulbe, J.-P. Herriau, J.-P. Huignard, “Laser beam control with non-linear interactions,” Rev. Tech. Thomson-CSF 22(3) 377–429 (1990).

Reed, M. K.

W. K. Bischel, M. K. Reed, D. K. Negus, G. Frangineas, “System for minimising depolarization of a laser beam due to thermally induced birefringence,” U.S. patent5,504,763 (April1996).

Rockwell, D. A.

D. A. Rockwell, “A review of phase conjugate solid state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

Salin, F.

Scott, A. M.

A. M. Scott, H. Cook, A. P. G. Davies, “A 12-pass laser amplifier scheme for achieving efficient high gain amplification,” in Conference on Lasers and Electro-Optics, Vol. 39 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 51–52.

Sharkov, A. V.

E. V. Khoroshilov, I. V. Kryukov, P. G. Kryukov, A. V. Sharkov, “10kHz rate amplification of 40fs optical pulses at low pumping energy,” in Ultrafast Phenomena VI, Vol. 48 of the Springer-Verlag Series in Chemistry (Springer-Verlag, Berlin, 1988), pp. 22–23.

Shkunov, V. V.

B. Ya. Zel’dovich, N. F. Pilipetskii, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985).

Soms, L. N.

A. F. Kornev, V. P. Pokrovskii, L. N. Soms, V. K. Stupnikov, “Scanlaser with an amplifying system,” Izv. Akad. Nauk SSSR Ser. Fiz. 55(2) 298–302 (1991).

Stewen, C.

C. Stewen, M. Larionov, A. Giesen, K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 35–41.

Stupnikov, V. K.

A. F. Kornev, V. P. Pokrovskii, L. N. Soms, V. K. Stupnikov, “Scanlaser with an amplifying system,” Izv. Akad. Nauk SSSR Ser. Fiz. 55(2) 298–302 (1991).

Yu Nosach, O.

O. Yu Nosach, V. I. Popovich, V. V. Ragulskii, F. S. Faizulov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16C, 617–621 (1972).

Zapata, L. E.

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

Zel’dovich, B. Ya.

B. Ya. Zel’dovich, N. F. Pilipetskii, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985).

IEEE J. Quantum Electron. (2)

D. A. Rockwell, “A review of phase conjugate solid state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995).
[CrossRef]

Izv. Akad. Nauk SSSR Ser. Fiz. (1)

A. F. Kornev, V. P. Pokrovskii, L. N. Soms, V. K. Stupnikov, “Scanlaser with an amplifying system,” Izv. Akad. Nauk SSSR Ser. Fiz. 55(2) 298–302 (1991).

J. Appl. Phys. (1)

L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Opt. Lett. (2)

Rev. Phys. Appl. (1)

R. L. Fork, F. A. Beisser, D. K. Fork, “Multi-pass optical amplifier using a double confocal resonator geometry,” Rev. Phys. Appl. 22, 1665–1671 (1987).

Rev. Tech. Thomson-CSF (1)

J.-L. Ayral, H. Rajbenbach, J. Montel, B. Loiseaux, A. Delboulbe, J.-P. Herriau, J.-P. Huignard, “Laser beam control with non-linear interactions,” Rev. Tech. Thomson-CSF 22(3) 377–429 (1990).

Sov. J. Quantum Electron. (1)

N. F. Andreev, S. V. Kuznetsov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wavefront,” Sov. J. Quantum Electron. 22, 800–802 (1992).
[CrossRef]

Sov. Phys. JETP (1)

O. Yu Nosach, V. I. Popovich, V. V. Ragulskii, F. S. Faizulov, “Cancellation of phase distortions in an amplifying medium with a Brillouin mirror,” Sov. Phys. JETP 16C, 617–621 (1972).

Other (7)

W. K. Bischel, M. K. Reed, D. K. Negus, G. Frangineas, “System for minimising depolarization of a laser beam due to thermally induced birefringence,” U.S. patent5,504,763 (April1996).

B. Ya. Zel’dovich, N. F. Pilipetskii, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985).

A. M. Scott, H. Cook, A. P. G. Davies, “A 12-pass laser amplifier scheme for achieving efficient high gain amplification,” in Conference on Lasers and Electro-Optics, Vol. 39 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 51–52.

E. V. Khoroshilov, I. V. Kryukov, P. G. Kryukov, A. V. Sharkov, “10kHz rate amplification of 40fs optical pulses at low pumping energy,” in Ultrafast Phenomena VI, Vol. 48 of the Springer-Verlag Series in Chemistry (Springer-Verlag, Berlin, 1988), pp. 22–23.

W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1976).
[CrossRef]

Onyx Optics Inc., 6551 Sierra Lane, Dublin, Calif.

C. Stewen, M. Larionov, A. Giesen, K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 35–41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Layout of system. The oscillator beam is injected into the system and makes several transits through the amplifier between mirrors 2 and 3. The amplified beam emerges beneath the oscillator beam and is directed to a SBS cell. The conjugate beam retraces the multiple passes through the amplifier system and is rejected by the Faraday isolator.

Fig. 2
Fig. 2

Perspective view of system showing the paths of the beams through the amplifier.

Fig. 3
Fig. 3

Aperture of the first telescope lens (outer circle), also showing the aperture of prism 1 (square) and beams numbered in the order they pass through the amplifier. Beam 1 passes the edge of prism 1. After reflection off mirror 2, we determined the location of the reflected beam 2 on the lens by reflecting position 1 about point P2. Similarly we determined the location of beam 3 by reflecting position 2 about point P3. In this way the location of all beams can be determined. After eight passes, the final beam passes the prism aperture.

Fig. 4
Fig. 4

(a) Input beam (near field), (b) input beam (far field, measured with a 1-m focal-length lens), (c) output beam (near field), (d) output beam (far field).

Fig. 5
Fig. 5

Output energy versus input energy: experimental data and results from modeling.

Fig. 6
Fig. 6

Output energy versus repetition rate. Variations in output energy are correlated with small variations in the small signal gain, varying from 2.2 to 2.4.

Fig. 7
Fig. 7

Geometry of the slab amplifier in both the plane and the side view. The fill factor is estimated to be 44%.

Fig. 8
Fig. 8

Energy of beam after each transit through the amplifier for various input energies. Note that transit 7 indicates the reflection by the SBS cell, and transits 8–13 correspond to the final six transits of the amplifier.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Eouti=Es ln1+expEiniEs-1expβEst(i-1)l,
Eout=SSBSEin-Eth when Ein>Eth

Metrics