Abstract

Narrow-bandwidth holographic reflection filters are demonstrated that use volume gratings in 100-µm-thick photopolymer films. A full width at half-maximum of 0.09 nm can be achieved with ∼35% peak reflectance near the 900-nm region. Detailed fabrication procedures and filter performances are described.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley-Interscience, New York, 1988), Chap. 7, pp. 254–294.
  2. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  3. I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
  4. J. Söchtig, “Ti:LiNbO3 stripe waveguide Bragg reflector gratings,” Electron. Lett. 24, 844–845 (1988).
    [CrossRef]
  5. D. E. Sheat, J. S. Leggatt, D. J. McCartney, “Position tunable volume reflection gratings for narrowband filtering applications (FWHM < 5 nm) in optical fiber systems,” Electron. Lett. 26, 42–44 (1990).
    [CrossRef]
  6. R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
    [CrossRef]
  7. R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
    [CrossRef]
  8. G. Rakuljic, V. Leyva, “Volume holographic narrow-band optical filter,” Opt. Lett. 18, 459–461 (1993).
    [CrossRef] [PubMed]
  9. A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995).
    [CrossRef] [PubMed]
  10. T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
    [CrossRef]
  11. W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
    [CrossRef]
  12. K. Curtis, D. Psaltis, “Characterization of the Dupont photopolymer for three-dimensional holographic storage,” Appl. Opt. 33, 5396–5399 (1994).
    [CrossRef] [PubMed]
  13. K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992).
    [CrossRef] [PubMed]
  14. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic storage,” Opt. Lett. 24, 487–489 (1999).
    [CrossRef]
  15. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  16. G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
    [CrossRef]
  17. C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
    [CrossRef]

1999 (1)

1998 (1)

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

1997 (2)

G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

1996 (1)

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

1995 (1)

1994 (3)

K. Curtis, D. Psaltis, “Characterization of the Dupont photopolymer for three-dimensional holographic storage,” Appl. Opt. 33, 5396–5399 (1994).
[CrossRef] [PubMed]

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

1993 (1)

1992 (1)

1990 (1)

D. E. Sheat, J. S. Leggatt, D. J. McCartney, “Position tunable volume reflection gratings for narrowband filtering applications (FWHM < 5 nm) in optical fiber systems,” Electron. Lett. 26, 42–44 (1990).
[CrossRef]

1989 (1)

1988 (1)

J. Söchtig, “Ti:LiNbO3 stripe waveguide Bragg reflector gratings,” Electron. Lett. 24, 844–845 (1988).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Alvarez-Bravo, J. V.

R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

Arizmendi, L.

R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Bennion, I.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Cabrera, J. M.

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

Chen, R. T.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Curtis, K.

Dhar, L.

Doran, N. J.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Fu, Z.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Gambogi, W. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
[CrossRef]

Glenn, W. H.

Hale, A.

Katz, H. E.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Leggatt, J. S.

D. E. Sheat, J. S. Leggatt, D. J. McCartney, “Position tunable volume reflection gratings for narrowband filtering applications (FWHM < 5 nm) in optical fiber systems,” Electron. Lett. 26, 42–44 (1990).
[CrossRef]

Leyva, V.

Liu, J.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

McCartney, D. J.

D. E. Sheat, J. S. Leggatt, D. J. McCartney, “Position tunable volume reflection gratings for narrowband filtering applications (FWHM < 5 nm) in optical fiber systems,” Electron. Lett. 26, 42–44 (1990).
[CrossRef]

Meltz, G.

Montemezzani, G.

G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Morey, W. W.

Müller, R.

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

Orlov, S.

Psaltis, D.

Rakuljic, G.

Santos, M. T.

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Schilling, F. C.

Schilling, M. L.

Schmieg, J. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Schnoes, M. G.

Sheat, D. E.

D. E. Sheat, J. S. Leggatt, D. J. McCartney, “Position tunable volume reflection gratings for narrowband filtering applications (FWHM < 5 nm) in optical fiber systems,” Electron. Lett. 26, 42–44 (1990).
[CrossRef]

Söchtig, J.

J. Söchtig, “Ti:LiNbO3 stripe waveguide Bragg reflector gratings,” Electron. Lett. 24, 844–845 (1988).
[CrossRef]

Sugden, K.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Trout, T. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
[CrossRef]

Weber, A. M.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
[CrossRef]

Williams, J. A. R.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Yariv, A.

Yeh, P.

P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley-Interscience, New York, 1988), Chap. 7, pp. 254–294.

Zgonik, M.

G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Zhang, L.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Zhao, C.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Adv. Mater. (1)

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Electron. Lett. (2)

J. Söchtig, “Ti:LiNbO3 stripe waveguide Bragg reflector gratings,” Electron. Lett. 24, 844–845 (1988).
[CrossRef]

D. E. Sheat, J. S. Leggatt, D. J. McCartney, “Position tunable volume reflection gratings for narrowband filtering applications (FWHM < 5 nm) in optical fiber systems,” Electron. Lett. 26, 42–44 (1990).
[CrossRef]

J. Phys. D (2)

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Phys. Rev. E (1)

G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Other (2)

P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley-Interscience, New York, 1988), Chap. 7, pp. 254–294.

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Coordinate system used in Eq. (1): I i , incident beam; I d , diffracted beam; K, grating vector; θ, angle between I i and the z axis in the material; ϕ, angle between K and the z axis in the material.

Fig. 2
Fig. 2

Experimental setup for recording reflection gratings. I1 and I2, writing beams at λ = 488 nm; I3, reflection of beam of I1 upon the photopolymer surface; 2β, the angle in air between I1 and I2; α, the angle in air between I2 and I3.

Fig. 3
Fig. 3

Experimental setup for detecting the reflection gratings: D1, D2, photodiodes; P, B, are pinhole and beam splitter, respectively; φ, coupling angle in the prism; and I i (I d ) incident (diffracted) probe beams, respectively. The coordinate system and the related quantities θ, ϕ, and d are set in accordance with those in Fig. 1.

Fig. 4
Fig. 4

Spectral response of the reflectance of a reflection grating filter recorded in a 100-µm-thick photopolymer film. The peak reflectance is ∼35%, with a FWHM of 0.09 nm at 884.5 nm. Total incident energy for recording is 70.7 mJ/cm2.

Fig. 5
Fig. 5

Peak reflectance and FWHM as functions of the filter’s central wavelength. The central wavelength is changed by tuning of coupling angle φ (see Fig. 3). The same filter as for Fig. 4 is used.

Fig. 6
Fig. 6

Dependence of peak reflectance at 880 nm on the total incident recording energy.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η=sinh2ν2-ξ2sinh2ν2-ξ2+1-ξ2/ν2,
λnsin β λw,

Metrics