Abstract

A trace concentration of SO2 near 225.7 nm has been detected with a master-oscillator power-oscillator laser system for the first time, to our knowledge. A photoacoustic absorption spectrum of SO2 has been recorded on the 1 A 21 B 2 (π–π*) transition. Parametric dependence of the photoacoustic signal has been investigated. A detection limit (signal-to-noise ratio of 1) of 1.3 parts in 109 [1.3 ppbv (parts per billion by volume)] for SO2 have been determined at 1 atmospheric pressure inside a photoacoustic cell.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High sensitive detection of nitric oxide using laser induced photoacoustic spectroscopy at 213 nm

Mohammed A. Gondal, Ahmed Asaad I. Khalil, and Noura Al-Suliman
Appl. Opt. 51(23) 5724-5734 (2012)

Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs

Jaakko Saarela, Tapio Sorvajärvi, Toni Laurila, and Juha Toivonen
Opt. Express 19(S4) A725-A732 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription