Abstract

The wavelengths of six spectral lines emitted by a molecular fluorine (F2) laser at 157 nm were measured to high accuracy with the 10.7-m normal-incidence vacuum spectrograph at the National Institute of Standards and Technology. Lines from a Pt–Ne hollow-cathode lamp served as the wavelength standards. Spectra of the laser and the Pt–Ne lamp were photographed simultaneously through an uncoated CaF2 beam splitter. The optical paths were arranged so as to avoid shifts in line positions arising from possible differences in illumination of the grating by the two sources. The strongest lasing line was found to have a wavelength of 157.63094(10) nm. Changes in wavelength for variations in gas mixture, total gas pressure, and voltage were also measured.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Semiconductor Industry Association, International Technology Roadmap for Semiconductors: 1999 Edition (International SEMATECH, Austin, Tex., 1999).
  2. J. A. McClay, A. S. L. McIntyre, “157 nm optical lithography: the accomplishments and the challenges,” Solid State Technol. 42, 57–68 (1999).
  3. J. K. Rice, A. K. Hays, J. R. Woodworth, “vuv emissions from mixtures of F2 and the noble gases—a molecular F2 laser at 1575 Å,” Appl. Phys. Lett. 31, 31–33 (1977).
    [CrossRef]
  4. M. Kakehata, C.-H. Yang, Y. Ueno, F. Kannari, “Output characteristics of a discharge-pumped F2 laser (157 nm) with an injection-seeded unstable resonator,” J. Appl. Phys. 74, 2241–2246 (1983).
    [CrossRef]
  5. S. M. Hooker, C. E. Webb, “Progress in vacuum ultraviolet lasers,” Prog. Quantum Electron. 18, 227–274 (1994).
    [CrossRef]
  6. J. R. Woodworth, J. K. Rice, “An efficient, high-power F2 laser near 157 nm,” J. Chem. Phys. 69, 2500–2504 (1978).
    [CrossRef]
  7. Commercial products are identified in this paper for adequate specification of the experimental procedure. This identification does not imply recommendation or endorsement by NIST.
  8. The wavelengths are cited in M. J. Weber, Handbook of Laser Wavelengths (CRC Press, Boca Raton, Fla., 1999) and in earlier versions of this table as being wavelengths in air. However, these values clearly represent wavelengths in vacuum.
  9. T. J. McKee, “Spectral-narrowing techniques for excimer laser oscillators,” Can. J. Phys. 63, 214–219 (1985).
    [CrossRef]
  10. Although no uncertainties or details of the measurements were given by McKee, review of the research log sheets at the National Research Council shows that the measurements were made by photographing light from the F2 laser in seventh order on a 10.7-m normal-incidence vacuum spectrograph. Wavelengths were calibrated by lines in overlapping orders from an iron hollow-cathode lamp. Light from the hollow cathode was directed to the spectrometer by a mirror mounted at 45 ° to the optic axis of the spectrometer. K. P. Huber, Steacie Institute for Molecular Science, National Research Council of Canada, Ottowa, Ontario (personal communication, March2000).
  11. V. N. Ishchenko, S. A. Kochubei, A. M. Razhev, “High-power efficient vacuum ultraviolet F2 laser excited by an electric discharge,” Sov. J. Quantum Electron. 16, 707–709 (1986).
    [CrossRef]
  12. K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2-lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).
    [CrossRef]
  13. J. E. Sansonetti, J. Reader, C. J. Sansonetti, N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130-4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
    [CrossRef]
  14. V. Kaufman, “Wavelengths, energy levels, and pressure shifts in mercury 198,” J. Opt. Soc. Am. 52, 866–870 (1962).
    [CrossRef]
  15. S. H. Emara, “Wavelength shifts in Hg198 as a function of temperature,” J. Res. Natl. Bur. Stand. Sect. A 65, 473–474 (1961).
    [CrossRef]

1999

J. A. McClay, A. S. L. McIntyre, “157 nm optical lithography: the accomplishments and the challenges,” Solid State Technol. 42, 57–68 (1999).

1994

S. M. Hooker, C. E. Webb, “Progress in vacuum ultraviolet lasers,” Prog. Quantum Electron. 18, 227–274 (1994).
[CrossRef]

1992

J. E. Sansonetti, J. Reader, C. J. Sansonetti, N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130-4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
[CrossRef]

1986

V. N. Ishchenko, S. A. Kochubei, A. M. Razhev, “High-power efficient vacuum ultraviolet F2 laser excited by an electric discharge,” Sov. J. Quantum Electron. 16, 707–709 (1986).
[CrossRef]

1985

T. J. McKee, “Spectral-narrowing techniques for excimer laser oscillators,” Can. J. Phys. 63, 214–219 (1985).
[CrossRef]

1983

M. Kakehata, C.-H. Yang, Y. Ueno, F. Kannari, “Output characteristics of a discharge-pumped F2 laser (157 nm) with an injection-seeded unstable resonator,” J. Appl. Phys. 74, 2241–2246 (1983).
[CrossRef]

1978

J. R. Woodworth, J. K. Rice, “An efficient, high-power F2 laser near 157 nm,” J. Chem. Phys. 69, 2500–2504 (1978).
[CrossRef]

1977

J. K. Rice, A. K. Hays, J. R. Woodworth, “vuv emissions from mixtures of F2 and the noble gases—a molecular F2 laser at 1575 Å,” Appl. Phys. Lett. 31, 31–33 (1977).
[CrossRef]

1962

1961

S. H. Emara, “Wavelength shifts in Hg198 as a function of temperature,” J. Res. Natl. Bur. Stand. Sect. A 65, 473–474 (1961).
[CrossRef]

Acquista, N.

J. E. Sansonetti, J. Reader, C. J. Sansonetti, N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130-4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
[CrossRef]

Bragin, I.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2-lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).
[CrossRef]

Emara, S. H.

S. H. Emara, “Wavelength shifts in Hg198 as a function of temperature,” J. Res. Natl. Bur. Stand. Sect. A 65, 473–474 (1961).
[CrossRef]

Govorkov, S.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2-lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).
[CrossRef]

Hays, A. K.

J. K. Rice, A. K. Hays, J. R. Woodworth, “vuv emissions from mixtures of F2 and the noble gases—a molecular F2 laser at 1575 Å,” Appl. Phys. Lett. 31, 31–33 (1977).
[CrossRef]

Hooker, S. M.

S. M. Hooker, C. E. Webb, “Progress in vacuum ultraviolet lasers,” Prog. Quantum Electron. 18, 227–274 (1994).
[CrossRef]

Hua, G.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2-lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).
[CrossRef]

Huber, K. P.

Although no uncertainties or details of the measurements were given by McKee, review of the research log sheets at the National Research Council shows that the measurements were made by photographing light from the F2 laser in seventh order on a 10.7-m normal-incidence vacuum spectrograph. Wavelengths were calibrated by lines in overlapping orders from an iron hollow-cathode lamp. Light from the hollow cathode was directed to the spectrometer by a mirror mounted at 45 ° to the optic axis of the spectrometer. K. P. Huber, Steacie Institute for Molecular Science, National Research Council of Canada, Ottowa, Ontario (personal communication, March2000).

Ishchenko, V. N.

V. N. Ishchenko, S. A. Kochubei, A. M. Razhev, “High-power efficient vacuum ultraviolet F2 laser excited by an electric discharge,” Sov. J. Quantum Electron. 16, 707–709 (1986).
[CrossRef]

Kakehata, M.

M. Kakehata, C.-H. Yang, Y. Ueno, F. Kannari, “Output characteristics of a discharge-pumped F2 laser (157 nm) with an injection-seeded unstable resonator,” J. Appl. Phys. 74, 2241–2246 (1983).
[CrossRef]

Kannari, F.

M. Kakehata, C.-H. Yang, Y. Ueno, F. Kannari, “Output characteristics of a discharge-pumped F2 laser (157 nm) with an injection-seeded unstable resonator,” J. Appl. Phys. 74, 2241–2246 (1983).
[CrossRef]

Kaufman, V.

Kleinschmidt, J.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2-lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).
[CrossRef]

Kochubei, S. A.

V. N. Ishchenko, S. A. Kochubei, A. M. Razhev, “High-power efficient vacuum ultraviolet F2 laser excited by an electric discharge,” Sov. J. Quantum Electron. 16, 707–709 (1986).
[CrossRef]

McClay, J. A.

J. A. McClay, A. S. L. McIntyre, “157 nm optical lithography: the accomplishments and the challenges,” Solid State Technol. 42, 57–68 (1999).

McIntyre, A. S. L.

J. A. McClay, A. S. L. McIntyre, “157 nm optical lithography: the accomplishments and the challenges,” Solid State Technol. 42, 57–68 (1999).

McKee, T. J.

T. J. McKee, “Spectral-narrowing techniques for excimer laser oscillators,” Can. J. Phys. 63, 214–219 (1985).
[CrossRef]

Pätzel, R.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2-lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).
[CrossRef]

Razhev, A. M.

V. N. Ishchenko, S. A. Kochubei, A. M. Razhev, “High-power efficient vacuum ultraviolet F2 laser excited by an electric discharge,” Sov. J. Quantum Electron. 16, 707–709 (1986).
[CrossRef]

Reader, J.

J. E. Sansonetti, J. Reader, C. J. Sansonetti, N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130-4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
[CrossRef]

Rice, J. K.

J. R. Woodworth, J. K. Rice, “An efficient, high-power F2 laser near 157 nm,” J. Chem. Phys. 69, 2500–2504 (1978).
[CrossRef]

J. K. Rice, A. K. Hays, J. R. Woodworth, “vuv emissions from mixtures of F2 and the noble gases—a molecular F2 laser at 1575 Å,” Appl. Phys. Lett. 31, 31–33 (1977).
[CrossRef]

Sansonetti, C. J.

J. E. Sansonetti, J. Reader, C. J. Sansonetti, N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130-4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
[CrossRef]

Sansonetti, J. E.

J. E. Sansonetti, J. Reader, C. J. Sansonetti, N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130-4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
[CrossRef]

Stamm, U.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2-lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).
[CrossRef]

Ueno, Y.

M. Kakehata, C.-H. Yang, Y. Ueno, F. Kannari, “Output characteristics of a discharge-pumped F2 laser (157 nm) with an injection-seeded unstable resonator,” J. Appl. Phys. 74, 2241–2246 (1983).
[CrossRef]

Vogler, K.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2-lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).
[CrossRef]

Voss, F.

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2-lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).
[CrossRef]

Webb, C. E.

S. M. Hooker, C. E. Webb, “Progress in vacuum ultraviolet lasers,” Prog. Quantum Electron. 18, 227–274 (1994).
[CrossRef]

Weber, M. J.

The wavelengths are cited in M. J. Weber, Handbook of Laser Wavelengths (CRC Press, Boca Raton, Fla., 1999) and in earlier versions of this table as being wavelengths in air. However, these values clearly represent wavelengths in vacuum.

Woodworth, J. R.

J. R. Woodworth, J. K. Rice, “An efficient, high-power F2 laser near 157 nm,” J. Chem. Phys. 69, 2500–2504 (1978).
[CrossRef]

J. K. Rice, A. K. Hays, J. R. Woodworth, “vuv emissions from mixtures of F2 and the noble gases—a molecular F2 laser at 1575 Å,” Appl. Phys. Lett. 31, 31–33 (1977).
[CrossRef]

Yang, C.-H.

M. Kakehata, C.-H. Yang, Y. Ueno, F. Kannari, “Output characteristics of a discharge-pumped F2 laser (157 nm) with an injection-seeded unstable resonator,” J. Appl. Phys. 74, 2241–2246 (1983).
[CrossRef]

Appl. Phys. Lett.

J. K. Rice, A. K. Hays, J. R. Woodworth, “vuv emissions from mixtures of F2 and the noble gases—a molecular F2 laser at 1575 Å,” Appl. Phys. Lett. 31, 31–33 (1977).
[CrossRef]

Can. J. Phys.

T. J. McKee, “Spectral-narrowing techniques for excimer laser oscillators,” Can. J. Phys. 63, 214–219 (1985).
[CrossRef]

J. Appl. Phys.

M. Kakehata, C.-H. Yang, Y. Ueno, F. Kannari, “Output characteristics of a discharge-pumped F2 laser (157 nm) with an injection-seeded unstable resonator,” J. Appl. Phys. 74, 2241–2246 (1983).
[CrossRef]

J. Chem. Phys.

J. R. Woodworth, J. K. Rice, “An efficient, high-power F2 laser near 157 nm,” J. Chem. Phys. 69, 2500–2504 (1978).
[CrossRef]

J. Opt. Soc. Am.

J. Res. Natl. Bur. Stand. Sect. A

S. H. Emara, “Wavelength shifts in Hg198 as a function of temperature,” J. Res. Natl. Bur. Stand. Sect. A 65, 473–474 (1961).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol.

J. E. Sansonetti, J. Reader, C. J. Sansonetti, N. Acquista, “Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130-4330 Å,” J. Res. Natl. Inst. Stand. Technol. 97, 1–211 (1992).
[CrossRef]

Prog. Quantum Electron.

S. M. Hooker, C. E. Webb, “Progress in vacuum ultraviolet lasers,” Prog. Quantum Electron. 18, 227–274 (1994).
[CrossRef]

Solid State Technol.

J. A. McClay, A. S. L. McIntyre, “157 nm optical lithography: the accomplishments and the challenges,” Solid State Technol. 42, 57–68 (1999).

Sov. J. Quantum Electron.

V. N. Ishchenko, S. A. Kochubei, A. M. Razhev, “High-power efficient vacuum ultraviolet F2 laser excited by an electric discharge,” Sov. J. Quantum Electron. 16, 707–709 (1986).
[CrossRef]

Other

K. Vogler, U. Stamm, I. Bragin, F. Voss, S. Govorkov, G. Hua, J. Kleinschmidt, R. Pätzel, “Advanced F2-lasers for microlithography,” in Optical Microlithography XIII, C. J. Progler, ed., Proc. SPIE4000, 1515–1528 (2000).
[CrossRef]

Semiconductor Industry Association, International Technology Roadmap for Semiconductors: 1999 Edition (International SEMATECH, Austin, Tex., 1999).

Commercial products are identified in this paper for adequate specification of the experimental procedure. This identification does not imply recommendation or endorsement by NIST.

The wavelengths are cited in M. J. Weber, Handbook of Laser Wavelengths (CRC Press, Boca Raton, Fla., 1999) and in earlier versions of this table as being wavelengths in air. However, these values clearly represent wavelengths in vacuum.

Although no uncertainties or details of the measurements were given by McKee, review of the research log sheets at the National Research Council shows that the measurements were made by photographing light from the F2 laser in seventh order on a 10.7-m normal-incidence vacuum spectrograph. Wavelengths were calibrated by lines in overlapping orders from an iron hollow-cathode lamp. Light from the hollow cathode was directed to the spectrometer by a mirror mounted at 45 ° to the optic axis of the spectrometer. K. P. Huber, Steacie Institute for Molecular Science, National Research Council of Canada, Ottowa, Ontario (personal communication, March2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of beam delivery and illumination system.

Fig. 2
Fig. 2

Schematic drawing of the observed lasing lines. The spectral lines rendered with dashed lines are observed only with high partial pressures of Ne in the laser gas mixture. Relative intensities are not to scale.

Fig. 3
Fig. 3

Variation of wavelength with discharge voltage for the strongest lasing line. Results are plotted for three independent tests: open squares, data set 1; open circles, data set 2; solid triangles, data set 3. The horizontal line represents the adopted average wavelength, 157.63094 nm, based on all observed values for the standard gas mixture.

Fig. 4
Fig. 4

Variation of wavelength with laser gas temperature for the strongest lasing line. Results are plotted for two independent tests: open circles, data set 1; solid triangles, data set 2. The horizontal line represents the adopted average wavelength, 157.63094 nm, based on all observed values for the standard gas mixture.

Fig. 5
Fig. 5

Variation of wavelength with partial pressure of primary gas fill (5% F2 in He) for the strongest lasing line. These values were measured with a He pressure of 270 kPa and have a slightly greater average wavelength than those observed with the standard conditions.

Fig. 6
Fig. 6

Variation of wavelength with He buffer gas pressure for the strongest lasing line. The solid line represents a shift rate of +1.5 pm/kPa that is based on the two sets of data shown and on data for the 157.52-nm line.

Tables (2)

Tables Icon

Table 1 Wavelengths of F2 Lasing Transitions in Standard Type Gas Mixture Described in the Text

Tables Icon

Table 2 Comparison of Wavelengths (nm) Measured for 198Hg with Standard Values

Metrics