Abstract

The laser-induced damage thresholds, absorptances, and damage morphologies of ZnS/MgF2 interference filters that were designed to allow radiation at wavelengths near 1064 nm to pass through them have been examined. The damage morphologies as well as their laser behaviors suggest that the initial damage is located not at the surface layers but near the interface of the spacer layer where ZnS is sublimed to form many little bubbles. The electric field distribution and the temperature rise in the multilayer was calculated to model this interesting phenomenon. Various explanations for the thermodynamic coupling are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, Thin-Film Optical Filters (Hilger, London, 1969), pp. 154–199.
  2. E. Abraham, I. J. M. Ogilvy, “Heat flow in an interference filter,” Appl. Phys. B 42, 31–34 (1987).
    [CrossRef]
  3. B. J. Bartholomenusz, “Laser-induced surface heating,” J. Appl. Phys. 73, 1066–1072 (1993).
    [CrossRef]
  4. M. Mansuripur, G. A. N. Connell, J. W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106–1114 (1982).
    [CrossRef] [PubMed]
  5. M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
    [CrossRef]
  6. Z. L. Wu, P. K. Kuo, R. L. Thomas, Z. Fan, “Absorptance measurement of thin films by using photothermal techniques: the influence of thermal properties,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozloski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 113–122 (1995).
  7. E. Matthias, J. Siegel, S. Petzold, M. Reiching, H. Skurk, O. W. Kading, E. Neske, “In-situ investigation of laser ablation of thin films,” Thin Solid Films 254, 139–146 (1995).
    [CrossRef]
  8. A. F. Stewart, A. H. Guenther, “Laser-induced damage: introduction,” Appl. Opt. 23, 21, 3741–3752 (1984).
  9. T. W. Walker, A. H. Guenther, P. E. Nelsen, “Pulsed laser-induced damage to thin-film optical coatings. I. Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
    [CrossRef]
  10. C. J. Stolz, J. R. Taylor, W. K. Eickelberg, J. D. Lindh, “Effects of vacuum exposure on stress and spectral shift of high reflective coatings,” Appl. Opt. 32, 5666–5674 (1993).
    [CrossRef] [PubMed]

1996 (1)

M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

1995 (1)

E. Matthias, J. Siegel, S. Petzold, M. Reiching, H. Skurk, O. W. Kading, E. Neske, “In-situ investigation of laser ablation of thin films,” Thin Solid Films 254, 139–146 (1995).
[CrossRef]

1993 (2)

1987 (1)

E. Abraham, I. J. M. Ogilvy, “Heat flow in an interference filter,” Appl. Phys. B 42, 31–34 (1987).
[CrossRef]

1984 (1)

A. F. Stewart, A. H. Guenther, “Laser-induced damage: introduction,” Appl. Opt. 23, 21, 3741–3752 (1984).

1982 (1)

1981 (1)

T. W. Walker, A. H. Guenther, P. E. Nelsen, “Pulsed laser-induced damage to thin-film optical coatings. I. Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

Abraham, E.

E. Abraham, I. J. M. Ogilvy, “Heat flow in an interference filter,” Appl. Phys. B 42, 31–34 (1987).
[CrossRef]

Bartholomenusz, B. J.

B. J. Bartholomenusz, “Laser-induced surface heating,” J. Appl. Phys. 73, 1066–1072 (1993).
[CrossRef]

Connell, G. A. N.

Eickelberg, W. K.

Fan, Z.

Z. L. Wu, P. K. Kuo, R. L. Thomas, Z. Fan, “Absorptance measurement of thin films by using photothermal techniques: the influence of thermal properties,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozloski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 113–122 (1995).

Franko, M.

M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

Goodman, J. W.

Guenther, A. H.

A. F. Stewart, A. H. Guenther, “Laser-induced damage: introduction,” Appl. Opt. 23, 21, 3741–3752 (1984).

T. W. Walker, A. H. Guenther, P. E. Nelsen, “Pulsed laser-induced damage to thin-film optical coatings. I. Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

Kading, O. W.

E. Matthias, J. Siegel, S. Petzold, M. Reiching, H. Skurk, O. W. Kading, E. Neske, “In-situ investigation of laser ablation of thin films,” Thin Solid Films 254, 139–146 (1995).
[CrossRef]

Kuo, P. K.

Z. L. Wu, P. K. Kuo, R. L. Thomas, Z. Fan, “Absorptance measurement of thin films by using photothermal techniques: the influence of thermal properties,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozloski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 113–122 (1995).

Lindh, J. D.

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Hilger, London, 1969), pp. 154–199.

Mansuripur, M.

Matthias, E.

E. Matthias, J. Siegel, S. Petzold, M. Reiching, H. Skurk, O. W. Kading, E. Neske, “In-situ investigation of laser ablation of thin films,” Thin Solid Films 254, 139–146 (1995).
[CrossRef]

Nelsen, P. E.

T. W. Walker, A. H. Guenther, P. E. Nelsen, “Pulsed laser-induced damage to thin-film optical coatings. I. Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

Neske, E.

E. Matthias, J. Siegel, S. Petzold, M. Reiching, H. Skurk, O. W. Kading, E. Neske, “In-situ investigation of laser ablation of thin films,” Thin Solid Films 254, 139–146 (1995).
[CrossRef]

Ogilvy, I. J. M.

E. Abraham, I. J. M. Ogilvy, “Heat flow in an interference filter,” Appl. Phys. B 42, 31–34 (1987).
[CrossRef]

Petzold, S.

E. Matthias, J. Siegel, S. Petzold, M. Reiching, H. Skurk, O. W. Kading, E. Neske, “In-situ investigation of laser ablation of thin films,” Thin Solid Films 254, 139–146 (1995).
[CrossRef]

Reiching, M.

E. Matthias, J. Siegel, S. Petzold, M. Reiching, H. Skurk, O. W. Kading, E. Neske, “In-situ investigation of laser ablation of thin films,” Thin Solid Films 254, 139–146 (1995).
[CrossRef]

Siegel, J.

E. Matthias, J. Siegel, S. Petzold, M. Reiching, H. Skurk, O. W. Kading, E. Neske, “In-situ investigation of laser ablation of thin films,” Thin Solid Films 254, 139–146 (1995).
[CrossRef]

Skurk, H.

E. Matthias, J. Siegel, S. Petzold, M. Reiching, H. Skurk, O. W. Kading, E. Neske, “In-situ investigation of laser ablation of thin films,” Thin Solid Films 254, 139–146 (1995).
[CrossRef]

Stewart, A. F.

A. F. Stewart, A. H. Guenther, “Laser-induced damage: introduction,” Appl. Opt. 23, 21, 3741–3752 (1984).

Stolz, C. J.

Taylor, J. R.

Thomas, R. L.

Z. L. Wu, P. K. Kuo, R. L. Thomas, Z. Fan, “Absorptance measurement of thin films by using photothermal techniques: the influence of thermal properties,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozloski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 113–122 (1995).

Tran, C. D.

M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

Walker, T. W.

T. W. Walker, A. H. Guenther, P. E. Nelsen, “Pulsed laser-induced damage to thin-film optical coatings. I. Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

Wu, Z. L.

Z. L. Wu, P. K. Kuo, R. L. Thomas, Z. Fan, “Absorptance measurement of thin films by using photothermal techniques: the influence of thermal properties,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozloski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 113–122 (1995).

Appl. Opt. (3)

Appl. Phys. B (1)

E. Abraham, I. J. M. Ogilvy, “Heat flow in an interference filter,” Appl. Phys. B 42, 31–34 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. W. Walker, A. H. Guenther, P. E. Nelsen, “Pulsed laser-induced damage to thin-film optical coatings. I. Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

J. Appl. Phys. (1)

B. J. Bartholomenusz, “Laser-induced surface heating,” J. Appl. Phys. 73, 1066–1072 (1993).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Franko, C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996).
[CrossRef]

Thin Solid Films (1)

E. Matthias, J. Siegel, S. Petzold, M. Reiching, H. Skurk, O. W. Kading, E. Neske, “In-situ investigation of laser ablation of thin films,” Thin Solid Films 254, 139–146 (1995).
[CrossRef]

Other (2)

H. A. Macleod, Thin-Film Optical Filters (Hilger, London, 1969), pp. 154–199.

Z. L. Wu, P. K. Kuo, R. L. Thomas, Z. Fan, “Absorptance measurement of thin films by using photothermal techniques: the influence of thermal properties,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozloski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2428, 113–122 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the interference filter. H, L, high- and low-index films, respectively. Absorption of the laser beam occurs in the active region (spacer).

Fig. 2
Fig. 2

Electric field distribution for a filter with the construction G(HL)42H(LH)4A, where G is BK7 glass, H is ZnS, L is MgF2, and A is air.

Fig. 3
Fig. 3

Temperature field distribution for a filter with the construction G(HL)42H(LH)4A, where G is BK7 glass, H is ZnS, L is MgF2, and A is air. Laser heating after 8 ns (dotted curve), after 10 ns (solid curve), and after 11 ns (dashed curve).

Fig. 4
Fig. 4

Experimental setup for measuring weak absorptance of a thin film by use of the STL technique.

Fig. 5
Fig. 5

Experimental layout for measurement of laser damage: 3-D, three dimensional.

Fig. 6
Fig. 6

Representation of LITD and absorptance test data obtained at 1064 nm.

Fig. 7
Fig. 7

Optical micrographs of typical damage after a single shot.

Fig. 8
Fig. 8

Initial damage profile tested by a roughness meter.

Fig. 9
Fig. 9

Scanning-electron micrographs of typical damage after a single shot.

Tables (1)

Tables Icon

Table 1 Transmission Indices of Interference Filters Before and After Baking

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

t=t12 exp-iδ1+r12 exp-iδ,
E1+E1-=1t1expi2δ1r1 expi2δ1r1 exp-i2δ1expi2δ1Et+0,
E1+E1-=1t1expi2δ1r1 exp-i2δ1t.
Emax=|E1++E1-|2=1t1 [1+|r1|2),  t1  1, Emax  1.
Cit Tr, z, t-Ki2Tr, z, t=gir, z, t,
t Tr, z=0, t=γr, z=0, t,
Tr, z=, t=Tr=, z, t=T0, Tr, z, t=0=T0.

Metrics