Abstract

A new method analogous to three-dimensional confocally based sensing is proposed. This method uses the technique of laser optical feedback imaging, which takes advantage of the resonant sensitivity of a short-cavity laser to frequency-shifted optical feedback for highly sensitive detection, making it ideal for surface and volume measurements of noncooperative targets. Rapid depth scanning is made possible by use of an electrically controlled variable-focus lens. The system is able to detect height discontinuities, and because detection occurs along the axis of projection the system does not have problems of shadow. Preliminary results for a depth range of 15 mm and a resolution of 100 µm are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G.-C. Jin, S. Tang, “Automated moiré contouring of diffuse surfaces,” Opt. Eng. 28, 1211–1215 (1989).
  2. V. Srinivasan, H. Liu, M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105–3108 (1984).
    [CrossRef] [PubMed]
  3. J. Esteve-Taboada, D. Mas, J. Garcia, “Three-dimensional object recognition by Fourier transform profilometry,” Appl. Opt. 38, 4760–4765 (1999).
    [CrossRef]
  4. I. Kaisto, J. Kostamovaara, M. Manninen, R. Myllyla, “Optical range finder for 1.5–10-m distances,” Appl. Opt. 22, 3258–3264 (1983).
    [CrossRef]
  5. T. Dresel, G. Häusler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [CrossRef] [PubMed]
  6. D. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
    [CrossRef]
  7. E. Lacot, R. Day, F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744–746 (1999).
    [CrossRef]
  8. E. Lacot, F. Stoeckel, “Détecteur optique actif,” French patentPCT/FR98/02092; 97/12391, INPI Grenoble (30September1997).
  9. B. Berge, J. Peseux, “Lentille à focale variable,” French patent97/12781, INPI Grenoble (8October1997).
  10. B. Berge, J. Peseux, “Variable focal length controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
    [CrossRef]
  11. A. E. Siegman, Lasers (University Science, Mill Valley, Calif.1986).

2000

B. Berge, J. Peseux, “Variable focal length controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

1999

1992

1989

G.-C. Jin, S. Tang, “Automated moiré contouring of diffuse surfaces,” Opt. Eng. 28, 1211–1215 (1989).

1984

1983

1982

D. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[CrossRef]

Berge, B.

B. Berge, J. Peseux, “Variable focal length controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

B. Berge, J. Peseux, “Lentille à focale variable,” French patent97/12781, INPI Grenoble (8October1997).

Day, R.

Dresel, T.

Esteve-Taboada, J.

Garcia, J.

Halioua, M.

Hamilton, D.

D. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[CrossRef]

Häusler, G.

Jin, G.-C.

G.-C. Jin, S. Tang, “Automated moiré contouring of diffuse surfaces,” Opt. Eng. 28, 1211–1215 (1989).

Kaisto, I.

Kostamovaara, J.

Lacot, E.

E. Lacot, R. Day, F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744–746 (1999).
[CrossRef]

E. Lacot, F. Stoeckel, “Détecteur optique actif,” French patentPCT/FR98/02092; 97/12391, INPI Grenoble (30September1997).

Liu, H.

Manninen, M.

Mas, D.

Myllyla, R.

Peseux, J.

B. Berge, J. Peseux, “Variable focal length controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

B. Berge, J. Peseux, “Lentille à focale variable,” French patent97/12781, INPI Grenoble (8October1997).

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif.1986).

Srinivasan, V.

Stoeckel, F.

E. Lacot, R. Day, F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744–746 (1999).
[CrossRef]

E. Lacot, F. Stoeckel, “Détecteur optique actif,” French patentPCT/FR98/02092; 97/12391, INPI Grenoble (30September1997).

Tang, S.

G.-C. Jin, S. Tang, “Automated moiré contouring of diffuse surfaces,” Opt. Eng. 28, 1211–1215 (1989).

Venzke, H.

Wilson, T.

D. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[CrossRef]

Appl. Opt.

Eur. Phys. J. E

B. Berge, J. Peseux, “Variable focal length controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

J. Appl. Phys.

D. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[CrossRef]

Opt. Eng.

G.-C. Jin, S. Tang, “Automated moiré contouring of diffuse surfaces,” Opt. Eng. 28, 1211–1215 (1989).

Opt. Lett.

Other

E. Lacot, F. Stoeckel, “Détecteur optique actif,” French patentPCT/FR98/02092; 97/12391, INPI Grenoble (30September1997).

B. Berge, J. Peseux, “Lentille à focale variable,” French patent97/12781, INPI Grenoble (8October1997).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif.1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: BS, beam splitter; L1, L2, lenses.

Fig. 2
Fig. 2

Schematic side view of the electrically controlled variable-focus lens.

Fig. 3
Fig. 3

Focal length of the electrically controlled variable-focus lens as a function of applied voltage.

Fig. 4
Fig. 4

Amplitude of modulation for a scan of the focal point across the surface of a mirror with a variable-focus lens.

Fig. 5
Fig. 5

Images of a small plastic model of the Egyptian queen Cleopatra: (a) photograph taken with a digital camera and (b) three-dimensional image obtained by LOFI.

Fig. 6
Fig. 6

Contour map of Cleopatra’s face with a contour spacing of 100 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔIΩIS=2γcReffηγ12+Ω02ωr2-Ω022+ηγ12Ω21/2cosΩ0t-ωcτ+ϕr,
ΔIΩ=ωRIS=2 γcγ1Reffη.

Metrics