Abstract

A novel mirror arrangement that enables large interaction lengths between atomic beams and laser fields by use of a small amount of laser power is presented. Its application to focusing and compression of neutral atomic beams is discussed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Adams, M. Sigel, J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994).
    [CrossRef]
  2. H. Mastwijk, J. Thomsen, P. van der Straten, A. Niehaus, “Optical collisions of cold metastable helium atoms,” Phys. Rev. Lett. 80, 5516–5519 (1998).
    [CrossRef]
  3. P. J. J. Tol, N. Herschbach, E. A. Hessels, W. Hogervorst, W. Vassen, “Large numbers of cold metastable helium atoms in a magneto-optical trap,” Phys. Rev. A 60, R761–R764 (1999).
    [CrossRef]
  4. K. Karremans, W. Vassen, W. Hogervorst, “Approaching the classical limit in the diamagnetic helium atom,” Phys. Rev. A 60, 2275–2284 (1999).
    [CrossRef]
  5. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
    [CrossRef] [PubMed]
  6. E. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
    [CrossRef] [PubMed]
  7. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
    [CrossRef] [PubMed]
  8. M. Walhout, H. Megens, A. Witte, S. Rolston, “Magneto-optical trapping of metastable xenon: isotope-shift measurements,” Phys. Rev. A 48, R879–R882 (1993).
    [CrossRef] [PubMed]
  9. J. E. Simsarian, A. Gosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, P. A. Voytas, “Magneto-optic trapping of 210Fr,” Phys. Rev. Lett. 76, 3522–3525 (1996).
    [CrossRef] [PubMed]
  10. J. P. J. Driessen, Eindhoven University of Technology, The Netherlands (personal communication, 1993).
  11. H. C. W. Beijerinck, K. A. H. van Leeuwen, Eindhoven University of Technology, The Netherlands (personal communication, 1996).
  12. W. Lu, M. D. Hoogerland, D. Milic, K. G. H. Baldwin, S. J. Buckman, “A bright metastable atom source at 80 K,” Rev. Sci. Instrum. (to be published).
  13. R. G. Dall, M. D. Hoogerland, K. G. H. Baldwin, S. J. Buckman, “Guiding of metastable helium atoms through hollow optical fibers,” J. Opt. B 1, 396–401 (1999).
    [CrossRef]

1999

P. J. J. Tol, N. Herschbach, E. A. Hessels, W. Hogervorst, W. Vassen, “Large numbers of cold metastable helium atoms in a magneto-optical trap,” Phys. Rev. A 60, R761–R764 (1999).
[CrossRef]

K. Karremans, W. Vassen, W. Hogervorst, “Approaching the classical limit in the diamagnetic helium atom,” Phys. Rev. A 60, 2275–2284 (1999).
[CrossRef]

R. G. Dall, M. D. Hoogerland, K. G. H. Baldwin, S. J. Buckman, “Guiding of metastable helium atoms through hollow optical fibers,” J. Opt. B 1, 396–401 (1999).
[CrossRef]

1998

H. Mastwijk, J. Thomsen, P. van der Straten, A. Niehaus, “Optical collisions of cold metastable helium atoms,” Phys. Rev. Lett. 80, 5516–5519 (1998).
[CrossRef]

1996

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

J. E. Simsarian, A. Gosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, P. A. Voytas, “Magneto-optic trapping of 210Fr,” Phys. Rev. Lett. 76, 3522–3525 (1996).
[CrossRef] [PubMed]

1995

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

1994

C. S. Adams, M. Sigel, J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994).
[CrossRef]

1993

M. Walhout, H. Megens, A. Witte, S. Rolston, “Magneto-optical trapping of metastable xenon: isotope-shift measurements,” Phys. Rev. A 48, R879–R882 (1993).
[CrossRef] [PubMed]

1987

E. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Adams, C. S.

C. S. Adams, M. Sigel, J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994).
[CrossRef]

Anderson, M. H.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Baldwin, K. G. H.

R. G. Dall, M. D. Hoogerland, K. G. H. Baldwin, S. J. Buckman, “Guiding of metastable helium atoms through hollow optical fibers,” J. Opt. B 1, 396–401 (1999).
[CrossRef]

W. Lu, M. D. Hoogerland, D. Milic, K. G. H. Baldwin, S. J. Buckman, “A bright metastable atom source at 80 K,” Rev. Sci. Instrum. (to be published).

Beijerinck, H. C. W.

H. C. W. Beijerinck, K. A. H. van Leeuwen, Eindhoven University of Technology, The Netherlands (personal communication, 1996).

Buckman, S. J.

R. G. Dall, M. D. Hoogerland, K. G. H. Baldwin, S. J. Buckman, “Guiding of metastable helium atoms through hollow optical fibers,” J. Opt. B 1, 396–401 (1999).
[CrossRef]

W. Lu, M. D. Hoogerland, D. Milic, K. G. H. Baldwin, S. J. Buckman, “A bright metastable atom source at 80 K,” Rev. Sci. Instrum. (to be published).

Cable, A.

E. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Chu, S.

E. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Cornell, E. A.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Corwin, K. L.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

Dall, R. G.

R. G. Dall, M. D. Hoogerland, K. G. H. Baldwin, S. J. Buckman, “Guiding of metastable helium atoms through hollow optical fibers,” J. Opt. B 1, 396–401 (1999).
[CrossRef]

Driessen, J. P. J.

J. P. J. Driessen, Eindhoven University of Technology, The Netherlands (personal communication, 1993).

Ensher, J. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Gosh, A.

J. E. Simsarian, A. Gosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, P. A. Voytas, “Magneto-optic trapping of 210Fr,” Phys. Rev. Lett. 76, 3522–3525 (1996).
[CrossRef] [PubMed]

Gwinner, G.

J. E. Simsarian, A. Gosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, P. A. Voytas, “Magneto-optic trapping of 210Fr,” Phys. Rev. Lett. 76, 3522–3525 (1996).
[CrossRef] [PubMed]

Herschbach, N.

P. J. J. Tol, N. Herschbach, E. A. Hessels, W. Hogervorst, W. Vassen, “Large numbers of cold metastable helium atoms in a magneto-optical trap,” Phys. Rev. A 60, R761–R764 (1999).
[CrossRef]

Hessels, E. A.

P. J. J. Tol, N. Herschbach, E. A. Hessels, W. Hogervorst, W. Vassen, “Large numbers of cold metastable helium atoms in a magneto-optical trap,” Phys. Rev. A 60, R761–R764 (1999).
[CrossRef]

Hogervorst, W.

P. J. J. Tol, N. Herschbach, E. A. Hessels, W. Hogervorst, W. Vassen, “Large numbers of cold metastable helium atoms in a magneto-optical trap,” Phys. Rev. A 60, R761–R764 (1999).
[CrossRef]

K. Karremans, W. Vassen, W. Hogervorst, “Approaching the classical limit in the diamagnetic helium atom,” Phys. Rev. A 60, 2275–2284 (1999).
[CrossRef]

Hoogerland, M. D.

R. G. Dall, M. D. Hoogerland, K. G. H. Baldwin, S. J. Buckman, “Guiding of metastable helium atoms through hollow optical fibers,” J. Opt. B 1, 396–401 (1999).
[CrossRef]

W. Lu, M. D. Hoogerland, D. Milic, K. G. H. Baldwin, S. J. Buckman, “A bright metastable atom source at 80 K,” Rev. Sci. Instrum. (to be published).

Karremans, K.

K. Karremans, W. Vassen, W. Hogervorst, “Approaching the classical limit in the diamagnetic helium atom,” Phys. Rev. A 60, 2275–2284 (1999).
[CrossRef]

Lu, W.

W. Lu, M. D. Hoogerland, D. Milic, K. G. H. Baldwin, S. J. Buckman, “A bright metastable atom source at 80 K,” Rev. Sci. Instrum. (to be published).

Lu, Z. T.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

Mastwijk, H.

H. Mastwijk, J. Thomsen, P. van der Straten, A. Niehaus, “Optical collisions of cold metastable helium atoms,” Phys. Rev. Lett. 80, 5516–5519 (1998).
[CrossRef]

Matthews, M. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Megens, H.

M. Walhout, H. Megens, A. Witte, S. Rolston, “Magneto-optical trapping of metastable xenon: isotope-shift measurements,” Phys. Rev. A 48, R879–R882 (1993).
[CrossRef] [PubMed]

Milic, D.

W. Lu, M. D. Hoogerland, D. Milic, K. G. H. Baldwin, S. J. Buckman, “A bright metastable atom source at 80 K,” Rev. Sci. Instrum. (to be published).

Mlynek, J.

C. S. Adams, M. Sigel, J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994).
[CrossRef]

Niehaus, A.

H. Mastwijk, J. Thomsen, P. van der Straten, A. Niehaus, “Optical collisions of cold metastable helium atoms,” Phys. Rev. Lett. 80, 5516–5519 (1998).
[CrossRef]

Orozco, L. A.

J. E. Simsarian, A. Gosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, P. A. Voytas, “Magneto-optic trapping of 210Fr,” Phys. Rev. Lett. 76, 3522–3525 (1996).
[CrossRef] [PubMed]

Prentiss, M.

E. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Pritchard, D. E.

E. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Raab, E.

E. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Renn, M. J.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

Rolston, S.

M. Walhout, H. Megens, A. Witte, S. Rolston, “Magneto-optical trapping of metastable xenon: isotope-shift measurements,” Phys. Rev. A 48, R879–R882 (1993).
[CrossRef] [PubMed]

Sigel, M.

C. S. Adams, M. Sigel, J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994).
[CrossRef]

Simsarian, J. E.

J. E. Simsarian, A. Gosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, P. A. Voytas, “Magneto-optic trapping of 210Fr,” Phys. Rev. Lett. 76, 3522–3525 (1996).
[CrossRef] [PubMed]

Sprouse, G. D.

J. E. Simsarian, A. Gosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, P. A. Voytas, “Magneto-optic trapping of 210Fr,” Phys. Rev. Lett. 76, 3522–3525 (1996).
[CrossRef] [PubMed]

Thomsen, J.

H. Mastwijk, J. Thomsen, P. van der Straten, A. Niehaus, “Optical collisions of cold metastable helium atoms,” Phys. Rev. Lett. 80, 5516–5519 (1998).
[CrossRef]

Tol, P. J. J.

P. J. J. Tol, N. Herschbach, E. A. Hessels, W. Hogervorst, W. Vassen, “Large numbers of cold metastable helium atoms in a magneto-optical trap,” Phys. Rev. A 60, R761–R764 (1999).
[CrossRef]

van der Straten, P.

H. Mastwijk, J. Thomsen, P. van der Straten, A. Niehaus, “Optical collisions of cold metastable helium atoms,” Phys. Rev. Lett. 80, 5516–5519 (1998).
[CrossRef]

van Leeuwen, K. A. H.

H. C. W. Beijerinck, K. A. H. van Leeuwen, Eindhoven University of Technology, The Netherlands (personal communication, 1996).

Vassen, W.

P. J. J. Tol, N. Herschbach, E. A. Hessels, W. Hogervorst, W. Vassen, “Large numbers of cold metastable helium atoms in a magneto-optical trap,” Phys. Rev. A 60, R761–R764 (1999).
[CrossRef]

K. Karremans, W. Vassen, W. Hogervorst, “Approaching the classical limit in the diamagnetic helium atom,” Phys. Rev. A 60, 2275–2284 (1999).
[CrossRef]

Voytas, P. A.

J. E. Simsarian, A. Gosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, P. A. Voytas, “Magneto-optic trapping of 210Fr,” Phys. Rev. Lett. 76, 3522–3525 (1996).
[CrossRef] [PubMed]

Walhout, M.

M. Walhout, H. Megens, A. Witte, S. Rolston, “Magneto-optical trapping of metastable xenon: isotope-shift measurements,” Phys. Rev. A 48, R879–R882 (1993).
[CrossRef] [PubMed]

Wieman, C. E.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Witte, A.

M. Walhout, H. Megens, A. Witte, S. Rolston, “Magneto-optical trapping of metastable xenon: isotope-shift measurements,” Phys. Rev. A 48, R879–R882 (1993).
[CrossRef] [PubMed]

J. Opt. B

R. G. Dall, M. D. Hoogerland, K. G. H. Baldwin, S. J. Buckman, “Guiding of metastable helium atoms through hollow optical fibers,” J. Opt. B 1, 396–401 (1999).
[CrossRef]

Phys. Rep.

C. S. Adams, M. Sigel, J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994).
[CrossRef]

Phys. Rev. A

P. J. J. Tol, N. Herschbach, E. A. Hessels, W. Hogervorst, W. Vassen, “Large numbers of cold metastable helium atoms in a magneto-optical trap,” Phys. Rev. A 60, R761–R764 (1999).
[CrossRef]

K. Karremans, W. Vassen, W. Hogervorst, “Approaching the classical limit in the diamagnetic helium atom,” Phys. Rev. A 60, 2275–2284 (1999).
[CrossRef]

M. Walhout, H. Megens, A. Witte, S. Rolston, “Magneto-optical trapping of metastable xenon: isotope-shift measurements,” Phys. Rev. A 48, R879–R882 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. E. Simsarian, A. Gosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, P. A. Voytas, “Magneto-optic trapping of 210Fr,” Phys. Rev. Lett. 76, 3522–3525 (1996).
[CrossRef] [PubMed]

H. Mastwijk, J. Thomsen, P. van der Straten, A. Niehaus, “Optical collisions of cold metastable helium atoms,” Phys. Rev. Lett. 80, 5516–5519 (1998).
[CrossRef]

E. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, C. E. Wieman, “Low-velocity intense source of atoms from a magneto-optical trap,” Phys. Rev. Lett. 77, 3331–3334 (1996).
[CrossRef] [PubMed]

Science

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Other

J. P. J. Driessen, Eindhoven University of Technology, The Netherlands (personal communication, 1993).

H. C. W. Beijerinck, K. A. H. van Leeuwen, Eindhoven University of Technology, The Netherlands (personal communication, 1996).

W. Lu, M. D. Hoogerland, D. Milic, K. G. H. Baldwin, S. J. Buckman, “A bright metastable atom source at 80 K,” Rev. Sci. Instrum. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Traditional eight-reflection mirror setup for a magneto-optic lens. The shaded area is illuminated from four sides with counterpropagating σ+ and σ- polarized laser fields. Recirculation reuses the laser light for the four laser fields. The center of the atomic beam is indicated by +.

Fig. 2
Fig. 2

The 32-reflection mirror arrangement used in the compression stage described here: (a) Three-dimensional view. The atomic beam is centered around the arrow. (b) View along the atomic beam axis. The center of the atomic beam is indicated by +. Recirculation of the laser light in three dimensions also increases the area of the laser beam and hence the interaction volume.

Fig. 3
Fig. 3

Incoming laser-beam area in a conventional setup (light shaded area) and in our setup (dark shaded area). The magnets inducing the quadrupole magnetic field are ideally placed around the downstream end of the interaction region, as indicated here. In a conventional setup, the magnets would be blocking the incoming laser beam.

Fig. 4
Fig. 4

Part of the mounting arrangement for the mirrors in (top) the side view and (bottom) the end-on view. The mirrors are 15 mm thick and have grooves machined into their sides, which allows for leaf springs. They can be tilted with respect to the mounting block by the kinematic adjusters.

Fig. 5
Fig. 5

Method for inspecting the correct alignment of a rooftop mirror pair. The vertical lines are the reflections of the apex between the mirrors from the front and back face of the shearing plate, respectively. In the area between these lines, parts of the laser beam following different paths interfere, giving a sensitive indication of the angle difference between these parts and hence of the angle in the apex. The horizontal line is a visual aid on the interferometer, indicating the direction of the fringes for a collimated laser beam. Interference patterns are shown for angles of (a) <90°, (b) 90°, and (c) >90°.

Fig. 6
Fig. 6

Image of the atomic beam profile as obtained by an atomic beam compressor, based on the mirror arrangement reviewed. The image is obtained by a micro-channel-plate particle detector and a phosphor screen. The image is captured by a CCD camera and a frame grabber. The dashed circle indicates the size of the microchannel plate (40 mm).

Metrics