Abstract

A variety of microscopic techniques were employed to characterize fluence-limiting defects in hafnia–silica multilayer coatings manufactured for the National Ignition Facility, a fusion laser with a wavelength of 1.053 µm and a pulse width of 3 ns. Photothermal microscopy, with the surface thermal lens effect, was used to map the absorption and thermal characteristics of 3 mm × 3 mm areas of the coatings. High-resolution subaperture scans, with a 1-µm step size and a 3-µm pump-beam diameter, were conducted on the defects to characterize their photothermal properties. Optical and atomic force microscopy were used to identify defects and characterize their topography. The defects were then irradiated by a damage testing laser (1.06 µm and 3 ns) in single-shot mode until damage occurred. The results were analyzed to determine the role of nodular and nonnodular defects in limiting the damage thresholds of the multilayer coatings. It was found that, although different types of defect were present in these coatings, the fluence-limiting ones had the highest photothermal signals (up to 126× over the host coating). The implication of this study is that coating process improvements for hafnia–silica multilayer coatings should have a broader focus than just elimination of source ejection, since high photothermal signals frequently occur at nodule-free regions. The study also demonstrates that, for optics subject to absorption-induced thermal damage, photothermal microscopy is an appropriate tool for nondestructive identification of fluence-limiting defects.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Paisner, W. H. Lowdermilk, J. D. Boyes, M. S. Sorem, J. S. Sorem, J. M. Soures, “Status of the National Ignition Facility project,” Fusion Eng. Des. 44, 23–33 (1999).
    [CrossRef]
  2. B. Van Wonterghem, J. R. Murray, J. H. Campbell, D. R. Speck, C. Barker, I. Smith, D. Browning, W. Behrendt, “Performance of a prototype, large-aperture multipass Nd:glass laser for inertial confinement fusion,” Appl. Opt. 36, 4932–4953 (1997).
    [CrossRef] [PubMed]
  3. M. R. Kozlowski, R. Chow, “The role of defects in laser damage of multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 640–648 (1994).
  4. C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, J. Hue, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 144–152 (1999).
  5. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
    [CrossRef] [PubMed]
  6. C. J. Stolz, L. M. Sheehan, M. K. Von Gunten, R. P. Bevis, D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 318–324 (1999).
    [CrossRef]
  7. S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. Von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–143 (1999).
  8. C. J. Stolz, J. M. Yoshiyama, A. Salleo, Z. L. Wu, J. Green, R. Krupka, “Characterization of nodular and thermal defects in hafnia–silica multilayer coatings using optical, photothermal, and atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 475–483 (1999).
  9. J. Dijon, G. Ravel, B. Andre, “Thermomechanical model of mirror laser damage at 1.06 µm. 2. Flat bottom pits formation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 398–407 (1999).
  10. M. Reichling, A. Bodemann, N. Kaiser, “Defect-induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 264–279 (1998).
    [CrossRef]
  11. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
    [CrossRef] [PubMed]
  12. M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
    [CrossRef]
  13. W. C. Mundy, R. S. Hughes, C. K. Carniliga, “Photothermal deflection microscopy of thin film optical coatings,” NBS Spec. Publ. 669, 349–354 (1982).
  14. J. Abate, A. Schmid, M. Guardalben, D. J. Smith, S. D. Jacobs, “Characterization of micron-sized, optical coating defects by photothermal deflection spectroscopy,” NBS Spec. Publ. 688, 385–392 (1983).
  15. A. F. Stewart, A. Rusek, A. H. Guenther, “Thermal imaging studies of laser irradiated coated optical surfaces,” NIST (Natl. Inst. Stand. Technol.) Spec. Publ. 775, 245–258 (1988).
  16. E. Welsch, D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
    [CrossRef] [PubMed]
  17. E. Welsch, K. Ettrich, M. Peters, W. Ziegler, H. Blaschke, “Application of photothermal probe beam deflection technique for ablation and damage measurements by using short UV-laser pulses,” J. Phys. (Paris) IV 4, 749–752 (1994).
  18. E. Welsch, K. Ettrich, M. Peters, H. Blaschke, W. Ziegler, A. Bodemann, M. Reichling, “Application of photothermal probe beam deflection technique for the high-sensitive characterization of optical thin films with respect to their optical, thermal, and thermoelastic inhomogeneities,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 993–1004 (1994).
    [CrossRef]
  19. E. Welsch, K. Ettrich, D. Ristau, U. Willamowski, “Absolute measurement of thermophysical and optical thin-film properties by photothermal methods for the investigation of laser damage,” Int. J. Thermophys. 20, 965–976 (1999).
    [CrossRef]
  20. A. Bodemann, M. Reichling, N. Kaiser, E. Welsch, “Photothermal microscopy of defects and laser damage morphology in Al2O3 dielectric mirror coatings for 248 nm,” Proc. SPIE 2114, 405–414 (1993).
    [CrossRef]
  21. A. Bodemann, N. Kaiser, M. Reichling, E. Welsch, “Micrometer resolved inspection of defects and laser damage sites in UV-high reflecting coatings by photothermal displacement microscopy,” J. Phys. IV 4, 611–614 (1994).
  22. S. Sumie, H. Takamatsu, Y. Nishimoto, T. Horiuchi, H. Nakayama, T. Kanata, T. Nishino, “A new method of photothermal displacement measurement by laser interferometric probe—its mechanism and applications to evaluation of lattice damage in semiconductor,” Jpn. J. Appl. Phys. 31, 3575–3583 (1992).
    [CrossRef]
  23. K. Rajasree, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Determination of the laser-induced damage threshold of bulk polymer samples at 1.06 mm using the pulsed photothermal deflection technique,” Meas. Sci. Technol. 4, 591–595 (1993).
    [CrossRef]
  24. M. Commandré, P. Roche, J. P. Borgogno, G. Albrand, “Surface contamination of bare substrates: mapping of absorption and influence on deposited thin films,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 982–992 (1994).
    [CrossRef]
  25. M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” Appl. Opt. 35, 5021–5034 (1996).
    [CrossRef]
  26. Z. L. Wu, K. Bange, “Comparative photothermal study of reactive low-voltage ion-plated and electron-beam-evaporated TiO2 thin films,” Appl. Opt. 33, 7901–7907 (1994).
    [CrossRef] [PubMed]
  27. Z. L. Wu, M. Thompson, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
    [CrossRef]
  28. P. K. Kuo, M. Munidasa, “Single-beam interferometry of a thermal bump,” Appl. Opt. 29, 5326–5331 (1990).
    [CrossRef] [PubMed]
  29. H. Saito, M. Irikura, M. Haraguchi, M. Fukui, “New type of photothermal spectroscopic technique,” Appl. Opt. 31, 2047–2053 (1992).
    [CrossRef] [PubMed]
  30. Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Non-destructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
    [CrossRef]
  31. R. Chow, J. R. Taylor, Z. L. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1998).
  32. C. J. Stolz, F. Y. Génin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. Von Gunten, D. J. Smith, J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology on HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE.2966, 265–272 (1997).
  33. C. C. Walton, F. Y. Génin, R. Chow, M. R. Kozlowski, G. E. Loomis, E. Pierce, “Effect of silica overlayers on laser damage of HfO2–SiO2 56° incidence high reflectors,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 550–558 (1996).
  34. Z. L. Wu, M. Reichling, Z. X. Fan, Z. J. Wang, “An understanding of the abnormal wavelength effect of overcoats,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1441, 200–213 (1991).
  35. R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
    [CrossRef]
  36. M. R. Kozlowski, R. J. Tench, R. Chow, L. Sheehan, “Influence of defect shape on laser-induced damage in multilayer coatings,” in Optical Interference Coatings, F. Abelés, ed., Proc. SPIE2253, 743–750 (1994).
    [CrossRef]
  37. M. Poulingue, H. Leplan, J. Dijon, B. Rafin, M. Ignat, “Generation of defects with diamond and silica particles inside high reflection coatings: influence on the laser damage threshold,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 325–336 (1999).
    [CrossRef]
  38. M. C. Staggs, M. Balooch, M. R. Kozlowski, W. J. Seikhaus, “In-situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 375–385 (1992).
  39. A. Fornier, C. Cordillot, D. Ausserre, F. Paris, “Laser conditioning of optical coatings: some issues in the characterization by atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 355–365 (1994).
  40. L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).
  41. J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
    [CrossRef]
  42. M. L. Grilli, D. Ristau, M. Dieckmann, U. Willamowski, “Thermal conductivity of e-beam coatings,” Appl. Phys. A 71, 71–76 (2000).
  43. F. Y. Génin, C. J. Stolz, M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2–SiO2 multilayer mirror and polarizer coatings,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 273–282 (1997).
  44. J. H. Apfel, “Optical coating design with reduced electric field intensity,” Appl. Opt. 16, 1880–1885 (1977).
    [CrossRef] [PubMed]
  45. A. J. Morgan, F. Rainer, F. P. DeMarco, R. P. Gonzales, M. R. Kozlowski, M. C. Staggs, “Expanded damage test facilities at LLNL,” in Laser-Induced Damage in Optical Materials: 1989, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., NIST (Natl. Inst. Stand. Technol.) Spec. Publ.801, 47–57 (1990).

2000 (1)

M. L. Grilli, D. Ristau, M. Dieckmann, U. Willamowski, “Thermal conductivity of e-beam coatings,” Appl. Phys. A 71, 71–76 (2000).

1999 (2)

J. A. Paisner, W. H. Lowdermilk, J. D. Boyes, M. S. Sorem, J. S. Sorem, J. M. Soures, “Status of the National Ignition Facility project,” Fusion Eng. Des. 44, 23–33 (1999).
[CrossRef]

E. Welsch, K. Ettrich, D. Ristau, U. Willamowski, “Absolute measurement of thermophysical and optical thin-film properties by photothermal methods for the investigation of laser damage,” Int. J. Thermophys. 20, 965–976 (1999).
[CrossRef]

1998 (1)

M. Reichling, A. Bodemann, N. Kaiser, “Defect-induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 264–279 (1998).
[CrossRef]

1997 (2)

1996 (2)

M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” Appl. Opt. 35, 5021–5034 (1996).
[CrossRef]

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Non-destructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

1995 (1)

1994 (4)

Z. L. Wu, K. Bange, “Comparative photothermal study of reactive low-voltage ion-plated and electron-beam-evaporated TiO2 thin films,” Appl. Opt. 33, 7901–7907 (1994).
[CrossRef] [PubMed]

R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

A. Bodemann, N. Kaiser, M. Reichling, E. Welsch, “Micrometer resolved inspection of defects and laser damage sites in UV-high reflecting coatings by photothermal displacement microscopy,” J. Phys. IV 4, 611–614 (1994).

E. Welsch, K. Ettrich, M. Peters, W. Ziegler, H. Blaschke, “Application of photothermal probe beam deflection technique for ablation and damage measurements by using short UV-laser pulses,” J. Phys. (Paris) IV 4, 749–752 (1994).

1993 (3)

K. Rajasree, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Determination of the laser-induced damage threshold of bulk polymer samples at 1.06 mm using the pulsed photothermal deflection technique,” Meas. Sci. Technol. 4, 591–595 (1993).
[CrossRef]

A. Bodemann, M. Reichling, N. Kaiser, E. Welsch, “Photothermal microscopy of defects and laser damage morphology in Al2O3 dielectric mirror coatings for 248 nm,” Proc. SPIE 2114, 405–414 (1993).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef] [PubMed]

1992 (2)

H. Saito, M. Irikura, M. Haraguchi, M. Fukui, “New type of photothermal spectroscopic technique,” Appl. Opt. 31, 2047–2053 (1992).
[CrossRef] [PubMed]

S. Sumie, H. Takamatsu, Y. Nishimoto, T. Horiuchi, H. Nakayama, T. Kanata, T. Nishino, “A new method of photothermal displacement measurement by laser interferometric probe—its mechanism and applications to evaluation of lattice damage in semiconductor,” Jpn. J. Appl. Phys. 31, 3575–3583 (1992).
[CrossRef]

1990 (1)

1989 (1)

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

1988 (1)

A. F. Stewart, A. Rusek, A. H. Guenther, “Thermal imaging studies of laser irradiated coated optical surfaces,” NIST (Natl. Inst. Stand. Technol.) Spec. Publ. 775, 245–258 (1988).

1983 (2)

J. Abate, A. Schmid, M. Guardalben, D. J. Smith, S. D. Jacobs, “Characterization of micron-sized, optical coating defects by photothermal deflection spectroscopy,” NBS Spec. Publ. 688, 385–392 (1983).

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

1982 (1)

W. C. Mundy, R. S. Hughes, C. K. Carniliga, “Photothermal deflection microscopy of thin film optical coatings,” NBS Spec. Publ. 669, 349–354 (1982).

1981 (1)

1977 (1)

Abate, J.

J. Abate, A. Schmid, M. Guardalben, D. J. Smith, S. D. Jacobs, “Characterization of micron-sized, optical coating defects by photothermal deflection spectroscopy,” NBS Spec. Publ. 688, 385–392 (1983).

Albrand, G.

M. Commandré, P. Roche, J. P. Borgogno, G. Albrand, “Surface contamination of bare substrates: mapping of absorption and influence on deposited thin films,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 982–992 (1994).
[CrossRef]

Amer, N. M.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
[CrossRef] [PubMed]

Amsden, C. A.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Andre, B.

J. Dijon, G. Ravel, B. Andre, “Thermomechanical model of mirror laser damage at 1.06 µm. 2. Flat bottom pits formation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 398–407 (1999).

Anzellotti, J. F.

C. J. Stolz, F. Y. Génin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. Von Gunten, D. J. Smith, J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology on HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE.2966, 265–272 (1997).

Apfel, J. H.

Ausserre, D.

A. Fornier, C. Cordillot, D. Ausserre, F. Paris, “Laser conditioning of optical coatings: some issues in the characterization by atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 355–365 (1994).

Balooch, M.

M. C. Staggs, M. Balooch, M. R. Kozlowski, W. J. Seikhaus, “In-situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 375–385 (1992).

Bange, K.

Barker, C.

Battersby, C.

L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).

Behrendt, W.

Bevis, R. P.

C. J. Stolz, F. Y. Génin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. Von Gunten, D. J. Smith, J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology on HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE.2966, 265–272 (1997).

C. J. Stolz, L. M. Sheehan, M. K. Von Gunten, R. P. Bevis, D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 318–324 (1999).
[CrossRef]

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. Von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–143 (1999).

Blaschke, H.

E. Welsch, K. Ettrich, M. Peters, W. Ziegler, H. Blaschke, “Application of photothermal probe beam deflection technique for ablation and damage measurements by using short UV-laser pulses,” J. Phys. (Paris) IV 4, 749–752 (1994).

E. Welsch, K. Ettrich, M. Peters, H. Blaschke, W. Ziegler, A. Bodemann, M. Reichling, “Application of photothermal probe beam deflection technique for the high-sensitive characterization of optical thin films with respect to their optical, thermal, and thermoelastic inhomogeneities,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 993–1004 (1994).
[CrossRef]

Boccara, A. C.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
[CrossRef] [PubMed]

Bodemann, A.

M. Reichling, A. Bodemann, N. Kaiser, “Defect-induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 264–279 (1998).
[CrossRef]

A. Bodemann, N. Kaiser, M. Reichling, E. Welsch, “Micrometer resolved inspection of defects and laser damage sites in UV-high reflecting coatings by photothermal displacement microscopy,” J. Phys. IV 4, 611–614 (1994).

A. Bodemann, M. Reichling, N. Kaiser, E. Welsch, “Photothermal microscopy of defects and laser damage morphology in Al2O3 dielectric mirror coatings for 248 nm,” Proc. SPIE 2114, 405–414 (1993).
[CrossRef]

E. Welsch, K. Ettrich, M. Peters, H. Blaschke, W. Ziegler, A. Bodemann, M. Reichling, “Application of photothermal probe beam deflection technique for the high-sensitive characterization of optical thin films with respect to their optical, thermal, and thermoelastic inhomogeneities,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 993–1004 (1994).
[CrossRef]

Borgogno, J. P.

M. Commandré, P. Roche, J. P. Borgogno, G. Albrand, “Surface contamination of bare substrates: mapping of absorption and influence on deposited thin films,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 982–992 (1994).
[CrossRef]

Boyes, J. D.

J. A. Paisner, W. H. Lowdermilk, J. D. Boyes, M. S. Sorem, J. S. Sorem, J. M. Soures, “Status of the National Ignition Facility project,” Fusion Eng. Des. 44, 23–33 (1999).
[CrossRef]

Browning, D.

Campbell, J. H.

Carniliga, C. K.

W. C. Mundy, R. S. Hughes, C. K. Carniliga, “Photothermal deflection microscopy of thin film optical coatings,” NBS Spec. Publ. 669, 349–354 (1982).

Chow, R.

R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef] [PubMed]

M. R. Kozlowski, R. J. Tench, R. Chow, L. Sheehan, “Influence of defect shape on laser-induced damage in multilayer coatings,” in Optical Interference Coatings, F. Abelés, ed., Proc. SPIE2253, 743–750 (1994).
[CrossRef]

M. R. Kozlowski, R. Chow, “The role of defects in laser damage of multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 640–648 (1994).

C. C. Walton, F. Y. Génin, R. Chow, M. R. Kozlowski, G. E. Loomis, E. Pierce, “Effect of silica overlayers on laser damage of HfO2–SiO2 56° incidence high reflectors,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 550–558 (1996).

R. Chow, J. R. Taylor, Z. L. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1998).

Commandré, M.

M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” Appl. Opt. 35, 5021–5034 (1996).
[CrossRef]

M. Commandré, P. Roche, J. P. Borgogno, G. Albrand, “Surface contamination of bare substrates: mapping of absorption and influence on deposited thin films,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 982–992 (1994).
[CrossRef]

Cordillot, C.

A. Fornier, C. Cordillot, D. Ausserre, F. Paris, “Laser conditioning of optical coatings: some issues in the characterization by atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 355–365 (1994).

DeMarco, F. P.

A. J. Morgan, F. Rainer, F. P. DeMarco, R. P. Gonzales, M. R. Kozlowski, M. C. Staggs, “Expanded damage test facilities at LLNL,” in Laser-Induced Damage in Optical Materials: 1989, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., NIST (Natl. Inst. Stand. Technol.) Spec. Publ.801, 47–57 (1990).

Diakomihalis, D.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Dickson, R.

L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).

Dieckmann, M.

M. L. Grilli, D. Ristau, M. Dieckmann, U. Willamowski, “Thermal conductivity of e-beam coatings,” Appl. Phys. A 71, 71–76 (2000).

Dijon, J.

J. Dijon, G. Ravel, B. Andre, “Thermomechanical model of mirror laser damage at 1.06 µm. 2. Flat bottom pits formation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 398–407 (1999).

M. Poulingue, H. Leplan, J. Dijon, B. Rafin, M. Ignat, “Generation of defects with diamond and silica particles inside high reflection coatings: influence on the laser damage threshold,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 325–336 (1999).
[CrossRef]

Ettrich, K.

E. Welsch, K. Ettrich, D. Ristau, U. Willamowski, “Absolute measurement of thermophysical and optical thin-film properties by photothermal methods for the investigation of laser damage,” Int. J. Thermophys. 20, 965–976 (1999).
[CrossRef]

E. Welsch, K. Ettrich, M. Peters, W. Ziegler, H. Blaschke, “Application of photothermal probe beam deflection technique for ablation and damage measurements by using short UV-laser pulses,” J. Phys. (Paris) IV 4, 749–752 (1994).

E. Welsch, K. Ettrich, M. Peters, H. Blaschke, W. Ziegler, A. Bodemann, M. Reichling, “Application of photothermal probe beam deflection technique for the high-sensitive characterization of optical thin films with respect to their optical, thermal, and thermoelastic inhomogeneities,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 993–1004 (1994).
[CrossRef]

Falabella, S.

Fan, Z. X.

Z. L. Wu, M. Reichling, Z. X. Fan, Z. J. Wang, “An understanding of the abnormal wavelength effect of overcoats,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1441, 200–213 (1991).

Fornier, A.

A. Fornier, C. Cordillot, D. Ausserre, F. Paris, “Laser conditioning of optical coatings: some issues in the characterization by atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 355–365 (1994).

Fournier, D.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
[CrossRef] [PubMed]

Fukui, M.

Génin, F. Y.

C. C. Walton, F. Y. Génin, R. Chow, M. R. Kozlowski, G. E. Loomis, E. Pierce, “Effect of silica overlayers on laser damage of HfO2–SiO2 56° incidence high reflectors,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 550–558 (1996).

F. Y. Génin, C. J. Stolz, M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2–SiO2 multilayer mirror and polarizer coatings,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 273–282 (1997).

C. J. Stolz, F. Y. Génin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. Von Gunten, D. J. Smith, J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology on HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE.2966, 265–272 (1997).

Gilman, S. E.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Gonzales, R. P.

A. J. Morgan, F. Rainer, F. P. DeMarco, R. P. Gonzales, M. R. Kozlowski, M. C. Staggs, “Expanded damage test facilities at LLNL,” in Laser-Induced Damage in Optical Materials: 1989, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., NIST (Natl. Inst. Stand. Technol.) Spec. Publ.801, 47–57 (1990).

Green, J.

C. J. Stolz, J. M. Yoshiyama, A. Salleo, Z. L. Wu, J. Green, R. Krupka, “Characterization of nodular and thermal defects in hafnia–silica multilayer coatings using optical, photothermal, and atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 475–483 (1999).

Grilli, M. L.

M. L. Grilli, D. Ristau, M. Dieckmann, U. Willamowski, “Thermal conductivity of e-beam coatings,” Appl. Phys. A 71, 71–76 (2000).

Gu, S. T.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Non-destructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

Guardalben, M.

J. Abate, A. Schmid, M. Guardalben, D. J. Smith, S. D. Jacobs, “Characterization of micron-sized, optical coating defects by photothermal deflection spectroscopy,” NBS Spec. Publ. 688, 385–392 (1983).

Guenther, A. H.

A. F. Stewart, A. Rusek, A. H. Guenther, “Thermal imaging studies of laser irradiated coated optical surfaces,” NIST (Natl. Inst. Stand. Technol.) Spec. Publ. 775, 245–258 (1988).

Han, Y.

R. Chow, J. R. Taylor, Z. L. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1998).

Haraguchi, M.

Horiuchi, T.

S. Sumie, H. Takamatsu, Y. Nishimoto, T. Horiuchi, H. Nakayama, T. Kanata, T. Nishino, “A new method of photothermal displacement measurement by laser interferometric probe—its mechanism and applications to evaluation of lattice damage in semiconductor,” Jpn. J. Appl. Phys. 31, 3575–3583 (1992).
[CrossRef]

Hue, J.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, J. Hue, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 144–152 (1999).

Hughes, R. S.

W. C. Mundy, R. S. Hughes, C. K. Carniliga, “Photothermal deflection microscopy of thin film optical coatings,” NBS Spec. Publ. 669, 349–354 (1982).

Ignat, M.

M. Poulingue, H. Leplan, J. Dijon, B. Rafin, M. Ignat, “Generation of defects with diamond and silica particles inside high reflection coatings: influence on the laser damage threshold,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 325–336 (1999).
[CrossRef]

Irikura, M.

Jackson, W. B.

Jacobs, S. D.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

J. Abate, A. Schmid, M. Guardalben, D. J. Smith, S. D. Jacobs, “Characterization of micron-sized, optical coating defects by photothermal deflection spectroscopy,” NBS Spec. Publ. 688, 385–392 (1983).

Jennings, R.

L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).

Jolly, M. R.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Kaiser, N.

M. Reichling, A. Bodemann, N. Kaiser, “Defect-induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 264–279 (1998).
[CrossRef]

A. Bodemann, N. Kaiser, M. Reichling, E. Welsch, “Micrometer resolved inspection of defects and laser damage sites in UV-high reflecting coatings by photothermal displacement microscopy,” J. Phys. IV 4, 611–614 (1994).

A. Bodemann, M. Reichling, N. Kaiser, E. Welsch, “Photothermal microscopy of defects and laser damage morphology in Al2O3 dielectric mirror coatings for 248 nm,” Proc. SPIE 2114, 405–414 (1993).
[CrossRef]

Kanata, T.

S. Sumie, H. Takamatsu, Y. Nishimoto, T. Horiuchi, H. Nakayama, T. Kanata, T. Nishino, “A new method of photothermal displacement measurement by laser interferometric probe—its mechanism and applications to evaluation of lattice damage in semiconductor,” Jpn. J. Appl. Phys. 31, 3575–3583 (1992).
[CrossRef]

Kimmons, J.

L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).

Kohn, S.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

Kozlowski, M.

L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).

Kozlowski, M. R.

Z. L. Wu, M. Thompson, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef] [PubMed]

M. C. Staggs, M. Balooch, M. R. Kozlowski, W. J. Seikhaus, “In-situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 375–385 (1992).

A. J. Morgan, F. Rainer, F. P. DeMarco, R. P. Gonzales, M. R. Kozlowski, M. C. Staggs, “Expanded damage test facilities at LLNL,” in Laser-Induced Damage in Optical Materials: 1989, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., NIST (Natl. Inst. Stand. Technol.) Spec. Publ.801, 47–57 (1990).

M. R. Kozlowski, R. J. Tench, R. Chow, L. Sheehan, “Influence of defect shape on laser-induced damage in multilayer coatings,” in Optical Interference Coatings, F. Abelés, ed., Proc. SPIE2253, 743–750 (1994).
[CrossRef]

M. R. Kozlowski, R. Chow, “The role of defects in laser damage of multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 640–648 (1994).

F. Y. Génin, C. J. Stolz, M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2–SiO2 multilayer mirror and polarizer coatings,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 273–282 (1997).

C. C. Walton, F. Y. Génin, R. Chow, M. R. Kozlowski, G. E. Loomis, E. Pierce, “Effect of silica overlayers on laser damage of HfO2–SiO2 56° incidence high reflectors,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 550–558 (1996).

Krupka, R.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Non-destructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

C. J. Stolz, J. M. Yoshiyama, A. Salleo, Z. L. Wu, J. Green, R. Krupka, “Characterization of nodular and thermal defects in hafnia–silica multilayer coatings using optical, photothermal, and atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 475–483 (1999).

Kuo, P. K.

Z. L. Wu, M. Thompson, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Non-destructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

P. K. Kuo, M. Munidasa, “Single-beam interferometry of a thermal bump,” Appl. Opt. 29, 5326–5331 (1990).
[CrossRef] [PubMed]

Lambropoulos, J. C.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Leplan, H.

M. Poulingue, H. Leplan, J. Dijon, B. Rafin, M. Ignat, “Generation of defects with diamond and silica particles inside high reflection coatings: influence on the laser damage threshold,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 325–336 (1999).
[CrossRef]

Loomis, G. E.

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef] [PubMed]

C. C. Walton, F. Y. Génin, R. Chow, M. R. Kozlowski, G. E. Loomis, E. Pierce, “Effect of silica overlayers on laser damage of HfO2–SiO2 56° incidence high reflectors,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 550–558 (1996).

Lowdermilk, W. H.

J. A. Paisner, W. H. Lowdermilk, J. D. Boyes, M. S. Sorem, J. S. Sorem, J. M. Soures, “Status of the National Ignition Facility project,” Fusion Eng. Des. 44, 23–33 (1999).
[CrossRef]

Lu, Y. S.

Z. L. Wu, M. Thompson, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Non-destructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

Maricle, S.

L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).

Maricle, S. M.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, J. Hue, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 144–152 (1999).

Molau, N.

C. J. Stolz, F. Y. Génin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. Von Gunten, D. J. Smith, J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology on HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE.2966, 265–272 (1997).

Morgan, A. J.

A. J. Morgan, F. Rainer, F. P. DeMarco, R. P. Gonzales, M. R. Kozlowski, M. C. Staggs, “Expanded damage test facilities at LLNL,” in Laser-Induced Damage in Optical Materials: 1989, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., NIST (Natl. Inst. Stand. Technol.) Spec. Publ.801, 47–57 (1990).

Mouser, R.

L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).

Mundy, W. C.

W. C. Mundy, R. S. Hughes, C. K. Carniliga, “Photothermal deflection microscopy of thin film optical coatings,” NBS Spec. Publ. 669, 349–354 (1982).

Munidasa, M.

Murray, J. R.

Nakayama, H.

S. Sumie, H. Takamatsu, Y. Nishimoto, T. Horiuchi, H. Nakayama, T. Kanata, T. Nishino, “A new method of photothermal displacement measurement by laser interferometric probe—its mechanism and applications to evaluation of lattice damage in semiconductor,” Jpn. J. Appl. Phys. 31, 3575–3583 (1992).
[CrossRef]

Nampoori, V. P. N.

K. Rajasree, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Determination of the laser-induced damage threshold of bulk polymer samples at 1.06 mm using the pulsed photothermal deflection technique,” Meas. Sci. Technol. 4, 591–595 (1993).
[CrossRef]

Nishimoto, Y.

S. Sumie, H. Takamatsu, Y. Nishimoto, T. Horiuchi, H. Nakayama, T. Kanata, T. Nishino, “A new method of photothermal displacement measurement by laser interferometric probe—its mechanism and applications to evaluation of lattice damage in semiconductor,” Jpn. J. Appl. Phys. 31, 3575–3583 (1992).
[CrossRef]

Nishino, T.

S. Sumie, H. Takamatsu, Y. Nishimoto, T. Horiuchi, H. Nakayama, T. Kanata, T. Nishino, “A new method of photothermal displacement measurement by laser interferometric probe—its mechanism and applications to evaluation of lattice damage in semiconductor,” Jpn. J. Appl. Phys. 31, 3575–3583 (1992).
[CrossRef]

Olmstead, M. A.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

Paisner, J. A.

J. A. Paisner, W. H. Lowdermilk, J. D. Boyes, M. S. Sorem, J. S. Sorem, J. M. Soures, “Status of the National Ignition Facility project,” Fusion Eng. Des. 44, 23–33 (1999).
[CrossRef]

Paris, F.

A. Fornier, C. Cordillot, D. Ausserre, F. Paris, “Laser conditioning of optical coatings: some issues in the characterization by atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 355–365 (1994).

Peters, M.

E. Welsch, K. Ettrich, M. Peters, W. Ziegler, H. Blaschke, “Application of photothermal probe beam deflection technique for ablation and damage measurements by using short UV-laser pulses,” J. Phys. (Paris) IV 4, 749–752 (1994).

E. Welsch, K. Ettrich, M. Peters, H. Blaschke, W. Ziegler, A. Bodemann, M. Reichling, “Application of photothermal probe beam deflection technique for the high-sensitive characterization of optical thin films with respect to their optical, thermal, and thermoelastic inhomogeneities,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 993–1004 (1994).
[CrossRef]

Pierce, E.

C. C. Walton, F. Y. Génin, R. Chow, M. R. Kozlowski, G. E. Loomis, E. Pierce, “Effect of silica overlayers on laser damage of HfO2–SiO2 56° incidence high reflectors,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 550–558 (1996).

Poulingue, M.

M. Poulingue, H. Leplan, J. Dijon, B. Rafin, M. Ignat, “Generation of defects with diamond and silica particles inside high reflection coatings: influence on the laser damage threshold,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 325–336 (1999).
[CrossRef]

Radhakrishnan, P.

K. Rajasree, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Determination of the laser-induced damage threshold of bulk polymer samples at 1.06 mm using the pulsed photothermal deflection technique,” Meas. Sci. Technol. 4, 591–595 (1993).
[CrossRef]

Rafin, B.

M. Poulingue, H. Leplan, J. Dijon, B. Rafin, M. Ignat, “Generation of defects with diamond and silica particles inside high reflection coatings: influence on the laser damage threshold,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 325–336 (1999).
[CrossRef]

Rainer, F.

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef] [PubMed]

A. J. Morgan, F. Rainer, F. P. DeMarco, R. P. Gonzales, M. R. Kozlowski, M. C. Staggs, “Expanded damage test facilities at LLNL,” in Laser-Induced Damage in Optical Materials: 1989, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., NIST (Natl. Inst. Stand. Technol.) Spec. Publ.801, 47–57 (1990).

Rajasree, K.

K. Rajasree, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Determination of the laser-induced damage threshold of bulk polymer samples at 1.06 mm using the pulsed photothermal deflection technique,” Meas. Sci. Technol. 4, 591–595 (1993).
[CrossRef]

Ravel, G.

J. Dijon, G. Ravel, B. Andre, “Thermomechanical model of mirror laser damage at 1.06 µm. 2. Flat bottom pits formation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 398–407 (1999).

Reichling, M.

M. Reichling, A. Bodemann, N. Kaiser, “Defect-induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 264–279 (1998).
[CrossRef]

A. Bodemann, N. Kaiser, M. Reichling, E. Welsch, “Micrometer resolved inspection of defects and laser damage sites in UV-high reflecting coatings by photothermal displacement microscopy,” J. Phys. IV 4, 611–614 (1994).

A. Bodemann, M. Reichling, N. Kaiser, E. Welsch, “Photothermal microscopy of defects and laser damage morphology in Al2O3 dielectric mirror coatings for 248 nm,” Proc. SPIE 2114, 405–414 (1993).
[CrossRef]

E. Welsch, K. Ettrich, M. Peters, H. Blaschke, W. Ziegler, A. Bodemann, M. Reichling, “Application of photothermal probe beam deflection technique for the high-sensitive characterization of optical thin films with respect to their optical, thermal, and thermoelastic inhomogeneities,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 993–1004 (1994).
[CrossRef]

Z. L. Wu, M. Reichling, Z. X. Fan, Z. J. Wang, “An understanding of the abnormal wavelength effect of overcoats,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1441, 200–213 (1991).

Reitter, T. A.

C. J. Stolz, F. Y. Génin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. Von Gunten, D. J. Smith, J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology on HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE.2966, 265–272 (1997).

Ristau, D.

M. L. Grilli, D. Ristau, M. Dieckmann, U. Willamowski, “Thermal conductivity of e-beam coatings,” Appl. Phys. A 71, 71–76 (2000).

E. Welsch, K. Ettrich, D. Ristau, U. Willamowski, “Absolute measurement of thermophysical and optical thin-film properties by photothermal methods for the investigation of laser damage,” Int. J. Thermophys. 20, 965–976 (1999).
[CrossRef]

E. Welsch, D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
[CrossRef] [PubMed]

Roche, P.

M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” Appl. Opt. 35, 5021–5034 (1996).
[CrossRef]

M. Commandré, P. Roche, J. P. Borgogno, G. Albrand, “Surface contamination of bare substrates: mapping of absorption and influence on deposited thin films,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 982–992 (1994).
[CrossRef]

Runkel, M.

L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).

Rusek, A.

A. F. Stewart, A. Rusek, A. H. Guenther, “Thermal imaging studies of laser irradiated coated optical surfaces,” NIST (Natl. Inst. Stand. Technol.) Spec. Publ. 775, 245–258 (1988).

Saito, H.

Salleo, A.

C. J. Stolz, J. M. Yoshiyama, A. Salleo, Z. L. Wu, J. Green, R. Krupka, “Characterization of nodular and thermal defects in hafnia–silica multilayer coatings using optical, photothermal, and atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 475–483 (1999).

Schmid, A.

J. Abate, A. Schmid, M. Guardalben, D. J. Smith, S. D. Jacobs, “Characterization of micron-sized, optical coating defects by photothermal deflection spectroscopy,” NBS Spec. Publ. 688, 385–392 (1983).

Schwartz, S.

L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, J. Hue, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 144–152 (1999).

Seikhaus, W. J.

M. C. Staggs, M. Balooch, M. R. Kozlowski, W. J. Seikhaus, “In-situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 375–385 (1992).

Sheehan, L.

M. R. Kozlowski, R. J. Tench, R. Chow, L. Sheehan, “Influence of defect shape on laser-induced damage in multilayer coatings,” in Optical Interference Coatings, F. Abelés, ed., Proc. SPIE2253, 743–750 (1994).
[CrossRef]

L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).

Sheehan, L. M.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, J. Hue, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 144–152 (1999).

C. J. Stolz, L. M. Sheehan, M. K. Von Gunten, R. P. Bevis, D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 318–324 (1999).
[CrossRef]

Sinicropi, M. J.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Smith, D. J.

J. Abate, A. Schmid, M. Guardalben, D. J. Smith, S. D. Jacobs, “Characterization of micron-sized, optical coating defects by photothermal deflection spectroscopy,” NBS Spec. Publ. 688, 385–392 (1983).

C. J. Stolz, L. M. Sheehan, M. K. Von Gunten, R. P. Bevis, D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 318–324 (1999).
[CrossRef]

C. J. Stolz, F. Y. Génin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. Von Gunten, D. J. Smith, J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology on HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE.2966, 265–272 (1997).

Smith, I.

Sorem, J. S.

J. A. Paisner, W. H. Lowdermilk, J. D. Boyes, M. S. Sorem, J. S. Sorem, J. M. Soures, “Status of the National Ignition Facility project,” Fusion Eng. Des. 44, 23–33 (1999).
[CrossRef]

Sorem, M. S.

J. A. Paisner, W. H. Lowdermilk, J. D. Boyes, M. S. Sorem, J. S. Sorem, J. M. Soures, “Status of the National Ignition Facility project,” Fusion Eng. Des. 44, 23–33 (1999).
[CrossRef]

Soures, J. M.

J. A. Paisner, W. H. Lowdermilk, J. D. Boyes, M. S. Sorem, J. S. Sorem, J. M. Soures, “Status of the National Ignition Facility project,” Fusion Eng. Des. 44, 23–33 (1999).
[CrossRef]

Speck, D. R.

Staggs, M. C.

M. C. Staggs, M. Balooch, M. R. Kozlowski, W. J. Seikhaus, “In-situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 375–385 (1992).

A. J. Morgan, F. Rainer, F. P. DeMarco, R. P. Gonzales, M. R. Kozlowski, M. C. Staggs, “Expanded damage test facilities at LLNL,” in Laser-Induced Damage in Optical Materials: 1989, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., NIST (Natl. Inst. Stand. Technol.) Spec. Publ.801, 47–57 (1990).

Stewart, A. F.

A. F. Stewart, A. Rusek, A. H. Guenther, “Thermal imaging studies of laser irradiated coated optical surfaces,” NIST (Natl. Inst. Stand. Technol.) Spec. Publ. 775, 245–258 (1988).

Stolz, C. J.

Z. L. Wu, M. Thompson, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef] [PubMed]

C. J. Stolz, J. M. Yoshiyama, A. Salleo, Z. L. Wu, J. Green, R. Krupka, “Characterization of nodular and thermal defects in hafnia–silica multilayer coatings using optical, photothermal, and atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 475–483 (1999).

C. J. Stolz, F. Y. Génin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. Von Gunten, D. J. Smith, J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology on HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE.2966, 265–272 (1997).

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, J. Hue, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 144–152 (1999).

F. Y. Génin, C. J. Stolz, M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2–SiO2 multilayer mirror and polarizer coatings,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 273–282 (1997).

C. J. Stolz, L. M. Sheehan, M. K. Von Gunten, R. P. Bevis, D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 318–324 (1999).
[CrossRef]

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. Von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–143 (1999).

Sumie, S.

S. Sumie, H. Takamatsu, Y. Nishimoto, T. Horiuchi, H. Nakayama, T. Kanata, T. Nishino, “A new method of photothermal displacement measurement by laser interferometric probe—its mechanism and applications to evaluation of lattice damage in semiconductor,” Jpn. J. Appl. Phys. 31, 3575–3583 (1992).
[CrossRef]

Takamatsu, H.

S. Sumie, H. Takamatsu, Y. Nishimoto, T. Horiuchi, H. Nakayama, T. Kanata, T. Nishino, “A new method of photothermal displacement measurement by laser interferometric probe—its mechanism and applications to evaluation of lattice damage in semiconductor,” Jpn. J. Appl. Phys. 31, 3575–3583 (1992).
[CrossRef]

Taylor, J. R.

R. Chow, J. R. Taylor, Z. L. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1998).

Tench, R. J.

R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

M. R. Kozlowski, R. J. Tench, R. Chow, L. Sheehan, “Influence of defect shape on laser-induced damage in multilayer coatings,” in Optical Interference Coatings, F. Abelés, ed., Proc. SPIE2253, 743–750 (1994).
[CrossRef]

Thompson, M.

Z. L. Wu, M. Thompson, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Vallabhan, C. P. G.

K. Rajasree, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Determination of the laser-induced damage threshold of bulk polymer samples at 1.06 mm using the pulsed photothermal deflection technique,” Meas. Sci. Technol. 4, 591–595 (1993).
[CrossRef]

Van Wonterghem, B.

Von Gunten, M. K.

C. J. Stolz, F. Y. Génin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. Von Gunten, D. J. Smith, J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology on HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE.2966, 265–272 (1997).

C. J. Stolz, L. M. Sheehan, M. K. Von Gunten, R. P. Bevis, D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 318–324 (1999).
[CrossRef]

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. Von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–143 (1999).

Walton, C. C.

C. C. Walton, F. Y. Génin, R. Chow, M. R. Kozlowski, G. E. Loomis, E. Pierce, “Effect of silica overlayers on laser damage of HfO2–SiO2 56° incidence high reflectors,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 550–558 (1996).

Wang, Z. J.

Z. L. Wu, M. Reichling, Z. X. Fan, Z. J. Wang, “An understanding of the abnormal wavelength effect of overcoats,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1441, 200–213 (1991).

Weakley, S. C.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. Von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–143 (1999).

Weinzapfel, C.

L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).

Welsch, E.

E. Welsch, K. Ettrich, D. Ristau, U. Willamowski, “Absolute measurement of thermophysical and optical thin-film properties by photothermal methods for the investigation of laser damage,” Int. J. Thermophys. 20, 965–976 (1999).
[CrossRef]

E. Welsch, D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
[CrossRef] [PubMed]

A. Bodemann, N. Kaiser, M. Reichling, E. Welsch, “Micrometer resolved inspection of defects and laser damage sites in UV-high reflecting coatings by photothermal displacement microscopy,” J. Phys. IV 4, 611–614 (1994).

E. Welsch, K. Ettrich, M. Peters, W. Ziegler, H. Blaschke, “Application of photothermal probe beam deflection technique for ablation and damage measurements by using short UV-laser pulses,” J. Phys. (Paris) IV 4, 749–752 (1994).

A. Bodemann, M. Reichling, N. Kaiser, E. Welsch, “Photothermal microscopy of defects and laser damage morphology in Al2O3 dielectric mirror coatings for 248 nm,” Proc. SPIE 2114, 405–414 (1993).
[CrossRef]

E. Welsch, K. Ettrich, M. Peters, H. Blaschke, W. Ziegler, A. Bodemann, M. Reichling, “Application of photothermal probe beam deflection technique for the high-sensitive characterization of optical thin films with respect to their optical, thermal, and thermoelastic inhomogeneities,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 993–1004 (1994).
[CrossRef]

Willamowski, U.

M. L. Grilli, D. Ristau, M. Dieckmann, U. Willamowski, “Thermal conductivity of e-beam coatings,” Appl. Phys. A 71, 71–76 (2000).

E. Welsch, K. Ettrich, D. Ristau, U. Willamowski, “Absolute measurement of thermophysical and optical thin-film properties by photothermal methods for the investigation of laser damage,” Int. J. Thermophys. 20, 965–976 (1999).
[CrossRef]

Wu, Z. L.

Z. L. Wu, M. Thompson, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Non-destructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

Z. L. Wu, K. Bange, “Comparative photothermal study of reactive low-voltage ion-plated and electron-beam-evaporated TiO2 thin films,” Appl. Opt. 33, 7901–7907 (1994).
[CrossRef] [PubMed]

C. J. Stolz, J. M. Yoshiyama, A. Salleo, Z. L. Wu, J. Green, R. Krupka, “Characterization of nodular and thermal defects in hafnia–silica multilayer coatings using optical, photothermal, and atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 475–483 (1999).

Z. L. Wu, M. Reichling, Z. X. Fan, Z. J. Wang, “An understanding of the abnormal wavelength effect of overcoats,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1441, 200–213 (1991).

R. Chow, J. R. Taylor, Z. L. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1998).

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. Von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–143 (1999).

Yang, T.

R. Chow, J. R. Taylor, Z. L. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1998).

Yoshiyama, J. M.

C. J. Stolz, J. M. Yoshiyama, A. Salleo, Z. L. Wu, J. Green, R. Krupka, “Characterization of nodular and thermal defects in hafnia–silica multilayer coatings using optical, photothermal, and atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 475–483 (1999).

Ziegler, W.

E. Welsch, K. Ettrich, M. Peters, W. Ziegler, H. Blaschke, “Application of photothermal probe beam deflection technique for ablation and damage measurements by using short UV-laser pulses,” J. Phys. (Paris) IV 4, 749–752 (1994).

E. Welsch, K. Ettrich, M. Peters, H. Blaschke, W. Ziegler, A. Bodemann, M. Reichling, “Application of photothermal probe beam deflection technique for the high-sensitive characterization of optical thin films with respect to their optical, thermal, and thermoelastic inhomogeneities,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 993–1004 (1994).
[CrossRef]

Appl. Opt. (9)

J. H. Apfel, “Optical coating design with reduced electric field intensity,” Appl. Opt. 16, 1880–1885 (1977).
[CrossRef] [PubMed]

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
[CrossRef] [PubMed]

P. K. Kuo, M. Munidasa, “Single-beam interferometry of a thermal bump,” Appl. Opt. 29, 5326–5331 (1990).
[CrossRef] [PubMed]

H. Saito, M. Irikura, M. Haraguchi, M. Fukui, “New type of photothermal spectroscopic technique,” Appl. Opt. 31, 2047–2053 (1992).
[CrossRef] [PubMed]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef] [PubMed]

Z. L. Wu, K. Bange, “Comparative photothermal study of reactive low-voltage ion-plated and electron-beam-evaporated TiO2 thin films,” Appl. Opt. 33, 7901–7907 (1994).
[CrossRef] [PubMed]

B. Van Wonterghem, J. R. Murray, J. H. Campbell, D. R. Speck, C. Barker, I. Smith, D. Browning, W. Behrendt, “Performance of a prototype, large-aperture multipass Nd:glass laser for inertial confinement fusion,” Appl. Opt. 36, 4932–4953 (1997).
[CrossRef] [PubMed]

E. Welsch, D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
[CrossRef] [PubMed]

M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” Appl. Opt. 35, 5021–5034 (1996).
[CrossRef]

Appl. Phys. A (2)

M. L. Grilli, D. Ristau, M. Dieckmann, U. Willamowski, “Thermal conductivity of e-beam coatings,” Appl. Phys. A 71, 71–76 (2000).

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, A. C. Boccara, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

Fusion Eng. Des. (1)

J. A. Paisner, W. H. Lowdermilk, J. D. Boyes, M. S. Sorem, J. S. Sorem, J. M. Soures, “Status of the National Ignition Facility project,” Fusion Eng. Des. 44, 23–33 (1999).
[CrossRef]

Int. J. Thermophys. (1)

E. Welsch, K. Ettrich, D. Ristau, U. Willamowski, “Absolute measurement of thermophysical and optical thin-film properties by photothermal methods for the investigation of laser damage,” Int. J. Thermophys. 20, 965–976 (1999).
[CrossRef]

J. Appl. Phys. (1)

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

J. Phys. (Paris) IV (1)

E. Welsch, K. Ettrich, M. Peters, W. Ziegler, H. Blaschke, “Application of photothermal probe beam deflection technique for ablation and damage measurements by using short UV-laser pulses,” J. Phys. (Paris) IV 4, 749–752 (1994).

J. Phys. IV (1)

A. Bodemann, N. Kaiser, M. Reichling, E. Welsch, “Micrometer resolved inspection of defects and laser damage sites in UV-high reflecting coatings by photothermal displacement microscopy,” J. Phys. IV 4, 611–614 (1994).

J. Vac. Sci. Technol. A (1)

R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Sumie, H. Takamatsu, Y. Nishimoto, T. Horiuchi, H. Nakayama, T. Kanata, T. Nishino, “A new method of photothermal displacement measurement by laser interferometric probe—its mechanism and applications to evaluation of lattice damage in semiconductor,” Jpn. J. Appl. Phys. 31, 3575–3583 (1992).
[CrossRef]

Meas. Sci. Technol. (1)

K. Rajasree, P. Radhakrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, “Determination of the laser-induced damage threshold of bulk polymer samples at 1.06 mm using the pulsed photothermal deflection technique,” Meas. Sci. Technol. 4, 591–595 (1993).
[CrossRef]

NBS Spec. Publ. (2)

W. C. Mundy, R. S. Hughes, C. K. Carniliga, “Photothermal deflection microscopy of thin film optical coatings,” NBS Spec. Publ. 669, 349–354 (1982).

J. Abate, A. Schmid, M. Guardalben, D. J. Smith, S. D. Jacobs, “Characterization of micron-sized, optical coating defects by photothermal deflection spectroscopy,” NBS Spec. Publ. 688, 385–392 (1983).

NIST (Natl. Inst. Stand. Technol.) Spec. Publ. (1)

A. F. Stewart, A. Rusek, A. H. Guenther, “Thermal imaging studies of laser irradiated coated optical surfaces,” NIST (Natl. Inst. Stand. Technol.) Spec. Publ. 775, 245–258 (1988).

Opt. Eng. (1)

Z. L. Wu, M. Thompson, P. K. Kuo, Y. S. Lu, C. J. Stolz, M. R. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Proc. SPIE (1)

A. Bodemann, M. Reichling, N. Kaiser, E. Welsch, “Photothermal microscopy of defects and laser damage morphology in Al2O3 dielectric mirror coatings for 248 nm,” Proc. SPIE 2114, 405–414 (1993).
[CrossRef]

Thin Solid Films (2)

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, R. Krupka, “Non-destructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect,” Thin Solid Films 291, 271–277 (1996).
[CrossRef]

M. Reichling, A. Bodemann, N. Kaiser, “Defect-induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 264–279 (1998).
[CrossRef]

Other (19)

F. Y. Génin, C. J. Stolz, M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2–SiO2 multilayer mirror and polarizer coatings,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 273–282 (1997).

M. R. Kozlowski, R. J. Tench, R. Chow, L. Sheehan, “Influence of defect shape on laser-induced damage in multilayer coatings,” in Optical Interference Coatings, F. Abelés, ed., Proc. SPIE2253, 743–750 (1994).
[CrossRef]

M. Poulingue, H. Leplan, J. Dijon, B. Rafin, M. Ignat, “Generation of defects with diamond and silica particles inside high reflection coatings: influence on the laser damage threshold,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 325–336 (1999).
[CrossRef]

M. C. Staggs, M. Balooch, M. R. Kozlowski, W. J. Seikhaus, “In-situ atomic force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1624, 375–385 (1992).

A. Fornier, C. Cordillot, D. Ausserre, F. Paris, “Laser conditioning of optical coatings: some issues in the characterization by atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 355–365 (1994).

L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, C. Weinzapfel, “Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 304–313 (1999).

R. Chow, J. R. Taylor, Z. L. Wu, Y. Han, T. Yang, “Absorptance measurements of transmissive optical components by the surface thermal lensing technique,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 376–385 (1998).

C. J. Stolz, F. Y. Génin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. Von Gunten, D. J. Smith, J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology on HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE.2966, 265–272 (1997).

C. C. Walton, F. Y. Génin, R. Chow, M. R. Kozlowski, G. E. Loomis, E. Pierce, “Effect of silica overlayers on laser damage of HfO2–SiO2 56° incidence high reflectors,” in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 550–558 (1996).

Z. L. Wu, M. Reichling, Z. X. Fan, Z. J. Wang, “An understanding of the abnormal wavelength effect of overcoats,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE1441, 200–213 (1991).

M. Commandré, P. Roche, J. P. Borgogno, G. Albrand, “Surface contamination of bare substrates: mapping of absorption and influence on deposited thin films,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 982–992 (1994).
[CrossRef]

E. Welsch, K. Ettrich, M. Peters, H. Blaschke, W. Ziegler, A. Bodemann, M. Reichling, “Application of photothermal probe beam deflection technique for the high-sensitive characterization of optical thin films with respect to their optical, thermal, and thermoelastic inhomogeneities,” in Optical Interference Coatings, F. Ablès, ed., Proc. SPIE2253, 993–1004 (1994).
[CrossRef]

M. R. Kozlowski, R. Chow, “The role of defects in laser damage of multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 640–648 (1994).

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, J. Hue, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 144–152 (1999).

C. J. Stolz, L. M. Sheehan, M. K. Von Gunten, R. P. Bevis, D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” in Advances in Optical Interference Coatings, C. Amra, H. A. Macleod, eds., Proc. SPIE3738, 318–324 (1999).
[CrossRef]

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. Von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–143 (1999).

C. J. Stolz, J. M. Yoshiyama, A. Salleo, Z. L. Wu, J. Green, R. Krupka, “Characterization of nodular and thermal defects in hafnia–silica multilayer coatings using optical, photothermal, and atomic force microscopy,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 475–483 (1999).

J. Dijon, G. Ravel, B. Andre, “Thermomechanical model of mirror laser damage at 1.06 µm. 2. Flat bottom pits formation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 398–407 (1999).

A. J. Morgan, F. Rainer, F. P. DeMarco, R. P. Gonzales, M. R. Kozlowski, M. C. Staggs, “Expanded damage test facilities at LLNL,” in Laser-Induced Damage in Optical Materials: 1989, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., NIST (Natl. Inst. Stand. Technol.) Spec. Publ.801, 47–57 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Illustration of the experimental procedure, in which a variety of techniques were used to characterize fluence-limiting defects prior to the laser damage testing.

Fig. 2
Fig. 2

Comparison of PTM (left) and OM (right) images of a marked area on a hafnia–silica high-reflection coating. The PTM image is a photothermal amplitude image. This image reflects the absolute value of the laser-induced surface deformation, determined by the pump-laser-induced temperature rise, and is proportional to the localized absorptance value.15,17,19 The sample was scanned with a 3-µm pump diameter and a 10-µm step length. The pump laser beam was modulated with a frequency of 40 Hz.

Fig. 3
Fig. 3

AFM characterization of selected defects shown in Fig. 2. Defects A, B, and C are nodules of different sizes.

Fig. 4
Fig. 4

Defects E and F are pits of different depths.

Fig. 5
Fig. 5

High-resolution photothermal images of three defects, A (nodule), C (nodule), and D (type unknown) as shown in Fig. 2, taken at low (40-Hz) and high (4.98-KHz) modulation frequencies, with a pump-beam diameter of 3 µm and a step-length of 1 µm.

Fig. 6
Fig. 6

Summary of the damage testing results (damage morphology and the damage threshold) of the characterized defects.

Fig. 7
Fig. 7

Quantitative correlation between laser damage threshold and photothermal signal for the defects studied. The squares are experimental data, and the straight line is a linear fit. The correlation between the data and linear fit, excluding defect D, is 0.93.

Fig. 8
Fig. 8

OM image of defect regions 2 and 3 of a hafnia–silica multilayer Brewster’s angle plate polarizer coating.

Fig. 9
Fig. 9

Low-resolution PTM image of defect region 3 of the coating in Fig. 7.

Fig. 10
Fig. 10

High-resolution PTM image of highest absorbing (126× over background) defect in Fig. 8.

Fig. 11
Fig. 11

OM image of defect regions 2 and 3 after damage testing. High-resolution images of laser-induced damage morphology measured by SEM.

Metrics