Abstract

We propose a new approach to the analysis of limb-scanning measurements of the atmosphere that are continually recorded from an orbiting platform. The retrieval is based on the simultaneous analysis of observations taken along the whole orbit. This approach accounts for the horizontal variability of the atmosphere, hence avoiding the errors caused by the assumption of horizontal homogeneity along the line of sight of the observations. A computer program that implements the proposed approach has been designed; its performance is shown with a simulated retrieval analysis based on a satellite experiment planned to fly during 2001. This program has also been used for determining the size and the character of the errors that are associated with the assumption of horizontal homogeneity. A computational strategy that reduces the large number of computer resources apparently demanded by the proposed inversion algorithm is described.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ridolfi, B. Carli, M. Carlotti, T. von Clarmann, B. M. Dinelli, A. Dudhia, J. M. Flaud, M. Höpfner, P. E. Morris, P. Raspollini, G. Stiller, R. J. Wells, “Optimized forward model and retrieval scheme for MIPAS near-real-time data processing,” Appl. Opt. 39, 1323–1340 (2000).
    [CrossRef]
  2. B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” in Final Report of ESA Study 12055-96-NL-CN (European Space Research and Technology Centre, Noordwijk, The Netherlands, 1998).
  3. G. P. Stiller, M. Höpfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, S. Zorn, “The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA): realization, model error assessment, and a posteriori justification,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space (European Space Research and Technology Center, Noordwijk, The Netherlands, (1999), pp. 749–756.
  4. H. E. Fleming, “Satellite remote sensing by the technique of computed tomography,” J. Appl. Meteorol. 21, 1538–1549 (1982).
    [CrossRef]
  5. J. Zhang, Y. Xun, “Advanced retrieval method in satellite remote sensing atmosphere: the technique of computed tomography,” in Optical Remote Sensing of the Atmosphere and Clouds, J. Wang, B. Wu, T. Ogawa, Z. Guan, eds.Proc. SPIE3501, 207–214 (1998).
    [CrossRef]
  6. C. J. Marks, C. D. Rodgers, “A retrieval method for atmospheric composition from limb emission measurements,” J. Geophys. Res. 98, 14,939–14,953 (1993).
    [CrossRef]
  7. A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.
  8. A. Goldman, D. G. Murcray, F. J. Murcray, W. J. Williams, J. N. Brooks, “Distribution of water vapor in the stratosphere as determined from balloon measurements of atmospheric emission spectra in the 24–29-µm region,” Appl. Opt. 12, 1045–1053 (1973).
    [CrossRef] [PubMed]
  9. M. Carlotti, “Global fit approach to the analysis of limb-scanning atmospheric measurements,” Appl. Opt. 27, 3250–3254 (1988).
    [CrossRef] [PubMed]
  10. J. T. Houghton, The Physics of Atmospheres, 2nd ed. (Cambridge U. Press, Cambridge, 1986).
  11. M. Carlotti, B. Carli, “Approach to the design and data analysis of a limb-scanning experiment,” Appl. Opt. 33, 3237–3249 (1994).
    [CrossRef] [PubMed]
  12. European Space Agency, ed., “ENVISAT-MIPAS: an instrument for atmospheric chemistry and climate research,” (European Space Research and Technology Center, Noordwijk, The Netherlands, March2000).
  13. M. P. Chipperfield, “Multiannual simulations with a three-dimensional chemical transport model,” J. Geophys. Res. 104, 1781–1805 (1999).
    [CrossRef]
  14. S. A. Clough, F. X. Kneizys, R. W. Davis, “Line shape and the water vapour continuum,” Atmos. Res. 23, 229–241 (1989).
    [CrossRef]
  15. T. von Clarmann, G. Echle, “Selection of optimized microwindows for atmospheric spectroscopy,” Appl. Opt. 37, 7661–7669 (1998).
    [CrossRef]

2000

1999

M. P. Chipperfield, “Multiannual simulations with a three-dimensional chemical transport model,” J. Geophys. Res. 104, 1781–1805 (1999).
[CrossRef]

1998

1994

1993

C. J. Marks, C. D. Rodgers, “A retrieval method for atmospheric composition from limb emission measurements,” J. Geophys. Res. 98, 14,939–14,953 (1993).
[CrossRef]

1989

S. A. Clough, F. X. Kneizys, R. W. Davis, “Line shape and the water vapour continuum,” Atmos. Res. 23, 229–241 (1989).
[CrossRef]

1988

1982

H. E. Fleming, “Satellite remote sensing by the technique of computed tomography,” J. Appl. Meteorol. 21, 1538–1549 (1982).
[CrossRef]

1973

Brooks, J. N.

Carli, B.

Carlotti, M.

Chipperfield, M. P.

M. P. Chipperfield, “Multiannual simulations with a three-dimensional chemical transport model,” J. Geophys. Res. 104, 1781–1805 (1999).
[CrossRef]

Clough, S. A.

S. A. Clough, F. X. Kneizys, R. W. Davis, “Line shape and the water vapour continuum,” Atmos. Res. 23, 229–241 (1989).
[CrossRef]

Davis, R. W.

S. A. Clough, F. X. Kneizys, R. W. Davis, “Line shape and the water vapour continuum,” Atmos. Res. 23, 229–241 (1989).
[CrossRef]

Dinelli, B. M.

M. Ridolfi, B. Carli, M. Carlotti, T. von Clarmann, B. M. Dinelli, A. Dudhia, J. M. Flaud, M. Höpfner, P. E. Morris, P. Raspollini, G. Stiller, R. J. Wells, “Optimized forward model and retrieval scheme for MIPAS near-real-time data processing,” Appl. Opt. 39, 1323–1340 (2000).
[CrossRef]

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” in Final Report of ESA Study 12055-96-NL-CN (European Space Research and Technology Centre, Noordwijk, The Netherlands, 1998).

Dudhia, A.

M. Ridolfi, B. Carli, M. Carlotti, T. von Clarmann, B. M. Dinelli, A. Dudhia, J. M. Flaud, M. Höpfner, P. E. Morris, P. Raspollini, G. Stiller, R. J. Wells, “Optimized forward model and retrieval scheme for MIPAS near-real-time data processing,” Appl. Opt. 39, 1323–1340 (2000).
[CrossRef]

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” in Final Report of ESA Study 12055-96-NL-CN (European Space Research and Technology Centre, Noordwijk, The Netherlands, 1998).

Echle, G.

T. von Clarmann, G. Echle, “Selection of optimized microwindows for atmospheric spectroscopy,” Appl. Opt. 37, 7661–7669 (1998).
[CrossRef]

A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” in Final Report of ESA Study 12055-96-NL-CN (European Space Research and Technology Centre, Noordwijk, The Netherlands, 1998).

G. P. Stiller, M. Höpfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, S. Zorn, “The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA): realization, model error assessment, and a posteriori justification,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space (European Space Research and Technology Center, Noordwijk, The Netherlands, (1999), pp. 749–756.

Fischer, H.

G. P. Stiller, M. Höpfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, S. Zorn, “The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA): realization, model error assessment, and a posteriori justification,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space (European Space Research and Technology Center, Noordwijk, The Netherlands, (1999), pp. 749–756.

Flaud, J. M.

Fleming, H. E.

H. E. Fleming, “Satellite remote sensing by the technique of computed tomography,” J. Appl. Meteorol. 21, 1538–1549 (1982).
[CrossRef]

Friedle, A.

A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.

Funke, B.

G. P. Stiller, M. Höpfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, S. Zorn, “The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA): realization, model error assessment, and a posteriori justification,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space (European Space Research and Technology Center, Noordwijk, The Netherlands, (1999), pp. 749–756.

Glatthor, N.

G. P. Stiller, M. Höpfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, S. Zorn, “The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA): realization, model error assessment, and a posteriori justification,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space (European Space Research and Technology Center, Noordwijk, The Netherlands, (1999), pp. 749–756.

Gobel, M.

A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.

Goldman, A.

Hase, F.

G. P. Stiller, M. Höpfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, S. Zorn, “The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA): realization, model error assessment, and a posteriori justification,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space (European Space Research and Technology Center, Noordwijk, The Netherlands, (1999), pp. 749–756.

Hilgers, S.

A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.

Höpfner, M.

M. Ridolfi, B. Carli, M. Carlotti, T. von Clarmann, B. M. Dinelli, A. Dudhia, J. M. Flaud, M. Höpfner, P. E. Morris, P. Raspollini, G. Stiller, R. J. Wells, “Optimized forward model and retrieval scheme for MIPAS near-real-time data processing,” Appl. Opt. 39, 1323–1340 (2000).
[CrossRef]

G. P. Stiller, M. Höpfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, S. Zorn, “The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA): realization, model error assessment, and a posteriori justification,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space (European Space Research and Technology Center, Noordwijk, The Netherlands, (1999), pp. 749–756.

A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.

Houghton, J. T.

J. T. Houghton, The Physics of Atmospheres, 2nd ed. (Cambridge U. Press, Cambridge, 1986).

Kemnitzer, H.

A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.

Kneizys, F. X.

S. A. Clough, F. X. Kneizys, R. W. Davis, “Line shape and the water vapour continuum,” Atmos. Res. 23, 229–241 (1989).
[CrossRef]

Kuntz, M.

G. P. Stiller, M. Höpfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, S. Zorn, “The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA): realization, model error assessment, and a posteriori justification,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space (European Space Research and Technology Center, Noordwijk, The Netherlands, (1999), pp. 749–756.

Marks, C. J.

C. J. Marks, C. D. Rodgers, “A retrieval method for atmospheric composition from limb emission measurements,” J. Geophys. Res. 98, 14,939–14,953 (1993).
[CrossRef]

Morris, P. E.

Murcray, D. G.

Murcray, F. J.

Raspollini, P.

M. Ridolfi, B. Carli, M. Carlotti, T. von Clarmann, B. M. Dinelli, A. Dudhia, J. M. Flaud, M. Höpfner, P. E. Morris, P. Raspollini, G. Stiller, R. J. Wells, “Optimized forward model and retrieval scheme for MIPAS near-real-time data processing,” Appl. Opt. 39, 1323–1340 (2000).
[CrossRef]

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” in Final Report of ESA Study 12055-96-NL-CN (European Space Research and Technology Centre, Noordwijk, The Netherlands, 1998).

Ressel, K. J.

A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.

Ridolfi, M.

M. Ridolfi, B. Carli, M. Carlotti, T. von Clarmann, B. M. Dinelli, A. Dudhia, J. M. Flaud, M. Höpfner, P. E. Morris, P. Raspollini, G. Stiller, R. J. Wells, “Optimized forward model and retrieval scheme for MIPAS near-real-time data processing,” Appl. Opt. 39, 1323–1340 (2000).
[CrossRef]

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” in Final Report of ESA Study 12055-96-NL-CN (European Space Research and Technology Centre, Noordwijk, The Netherlands, 1998).

Rodgers, C. D.

C. J. Marks, C. D. Rodgers, “A retrieval method for atmospheric composition from limb emission measurements,” J. Geophys. Res. 98, 14,939–14,953 (1993).
[CrossRef]

Schwarz, G.

A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.

Slijkhuis, S.

A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.

Steck, T.

A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.

Stiller, G.

Stiller, G. P.

G. P. Stiller, M. Höpfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, S. Zorn, “The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA): realization, model error assessment, and a posteriori justification,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space (European Space Research and Technology Center, Noordwijk, The Netherlands, (1999), pp. 749–756.

von Clarmann, T.

M. Ridolfi, B. Carli, M. Carlotti, T. von Clarmann, B. M. Dinelli, A. Dudhia, J. M. Flaud, M. Höpfner, P. E. Morris, P. Raspollini, G. Stiller, R. J. Wells, “Optimized forward model and retrieval scheme for MIPAS near-real-time data processing,” Appl. Opt. 39, 1323–1340 (2000).
[CrossRef]

T. von Clarmann, G. Echle, “Selection of optimized microwindows for atmospheric spectroscopy,” Appl. Opt. 37, 7661–7669 (1998).
[CrossRef]

A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.

G. P. Stiller, M. Höpfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, S. Zorn, “The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA): realization, model error assessment, and a posteriori justification,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space (European Space Research and Technology Center, Noordwijk, The Netherlands, (1999), pp. 749–756.

Wells, R. J.

Williams, W. J.

Xun, Y.

J. Zhang, Y. Xun, “Advanced retrieval method in satellite remote sensing atmosphere: the technique of computed tomography,” in Optical Remote Sensing of the Atmosphere and Clouds, J. Wang, B. Wu, T. Ogawa, Z. Guan, eds.Proc. SPIE3501, 207–214 (1998).
[CrossRef]

Zhang, J.

J. Zhang, Y. Xun, “Advanced retrieval method in satellite remote sensing atmosphere: the technique of computed tomography,” in Optical Remote Sensing of the Atmosphere and Clouds, J. Wang, B. Wu, T. Ogawa, Z. Guan, eds.Proc. SPIE3501, 207–214 (1998).
[CrossRef]

Zorn, S.

G. P. Stiller, M. Höpfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, S. Zorn, “The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA): realization, model error assessment, and a posteriori justification,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space (European Space Research and Technology Center, Noordwijk, The Netherlands, (1999), pp. 749–756.

Appl. Opt.

Atmos. Res.

S. A. Clough, F. X. Kneizys, R. W. Davis, “Line shape and the water vapour continuum,” Atmos. Res. 23, 229–241 (1989).
[CrossRef]

J. Appl. Meteorol.

H. E. Fleming, “Satellite remote sensing by the technique of computed tomography,” J. Appl. Meteorol. 21, 1538–1549 (1982).
[CrossRef]

J. Geophys. Res.

C. J. Marks, C. D. Rodgers, “A retrieval method for atmospheric composition from limb emission measurements,” J. Geophys. Res. 98, 14,939–14,953 (1993).
[CrossRef]

M. P. Chipperfield, “Multiannual simulations with a three-dimensional chemical transport model,” J. Geophys. Res. 104, 1781–1805 (1999).
[CrossRef]

Other

European Space Agency, ed., “ENVISAT-MIPAS: an instrument for atmospheric chemistry and climate research,” (European Space Research and Technology Center, Noordwijk, The Netherlands, March2000).

A. Friedle, M. Gobel, S. Hilgers, H. Kemnitzer, K. J. Ressel, G. Schwarz, S. Slijkhuis, T. Steck, T. von Clarmann, G. Echle, M. Höpfner, “The MIPAS level 2 off-line processor: realization and test results,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space, (European Space Research and Technology Center, Noordwijk, The Netherlands, 1999), pp. 509–512.

J. T. Houghton, The Physics of Atmospheres, 2nd ed. (Cambridge U. Press, Cambridge, 1986).

J. Zhang, Y. Xun, “Advanced retrieval method in satellite remote sensing atmosphere: the technique of computed tomography,” in Optical Remote Sensing of the Atmosphere and Clouds, J. Wang, B. Wu, T. Ogawa, Z. Guan, eds.Proc. SPIE3501, 207–214 (1998).
[CrossRef]

B. Carli, M. Ridolfi, P. Raspollini, B. M. Dinelli, A. Dudhia, G. Echle, “Study of the retrieval of atmospheric trace gas profiles from infrared spectra,” in Final Report of ESA Study 12055-96-NL-CN (European Space Research and Technology Centre, Noordwijk, The Netherlands, 1998).

G. P. Stiller, M. Höpfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, S. Zorn, “The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA): realization, model error assessment, and a posteriori justification,” in Proceedings of ESAMS’99, European Symposium on Atmospheric Measurements from Space (European Space Research and Technology Center, Noordwijk, The Netherlands, (1999), pp. 749–756.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Lines of sight for a satellite experiment that measures the atmosphere while looking backward along the track of the orbit. The tangent points of the limb-scanning sequence, plus those of two adjacent sequences, are marked by filled circles.

Fig. 2
Fig. 2

Ozone distribution along the orbit selected for the retrieval test. VMR values are represented by different colors as a function of altitude and orbital coordinate. (ppmv, Parts in 106 by volume.)

Fig. 3
Fig. 3

Values of the ESD obtained by the geofit as a function of altitude and orbital coordinate.

Fig. 4
Fig. 4

Absolute values of the difference between VMR’s retrieved by the geo-fit and reference VMR’s.

Fig. 5
Fig. 5

Values of the ESD obtained by the geo-fit for a retrieval grid displaced to positions that are coincident with the ORM grids.

Fig. 6
Fig. 6

Absolute values of the difference between VMR’s retrieved by the geo-fit and reference VMR’s for a retrieval grid displaced to positions coincident with the ORM grids.

Fig. 7
Fig. 7

Values of the ESD obtained by the ORM.

Fig. 8
Fig. 8

Absolute values of the difference between VMR’s retrieved by the ORM and reference VMR’s.

Fig. 9
Fig. 9

Geofit errors for a sequence near the equator. Dotted–dashed curves delimit the strip of percent ESD’s. The solid curve joins the values of the percent deviations (marked by filled circles).

Fig. 10
Fig. 10

ORM errors for the same limb-scanning sequence, with the same identifications of the curves, as in Fig. 9.

Fig. 11
Fig. 11

Geofit errors as a function of altitude for a sequence crossing the antarctic polar vortex (orbital coordinate, ≈160°). Curves have the same meanings as for Fig. 10.

Fig. 12
Fig. 12

ORM errors as a function of altitude for the same limb-scanning sequence as in Fig. 11. Curves have the same meaning as for Fig. 10.

Fig. 13
Fig. 13

ORM errors as a function of altitude for the same limb-scanning sequence as in Fig. 11 for observations generated by an atmosphere that is horizontally homogeneous with respect to pressure and temperature. Curves have the same meaning as in Fig. 10.

Tables (1)

Tables Icon

Table 1 Performance of Geo-Fit for Ozone VMR Retrieval

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S=p=1N Bp1-expτpk=p+1Nexp-τk,p,
τp=g=1Ngas cg,pcolg,p+ccont pcolair p
y=KTSn-1K-1KTSn-1n,
χ2=nTSn-1n.
q=χ2m-n,
Vy=KTSn-1K-1.
yn,  Km, n,  Snm, m,  nm,

Metrics