Abstract

Simulation results are presented to illustrate the main features of what we believe is a new photolithographic technique, evanescent interferometric lithography (EIL). The technique exploits interference between resonantly enhanced, evanescently decaying diffracted orders to create a frequency-doubled intensity pattern in the near field of a metallic diffraction grating. It is shown that the intensity in a grating’s near field can be enhanced significantly compared with conventional interferometric lithography. Contrast in the interference pattern is also increased, owing to a reduction in the zeroth-order transmission near resonance. The pattern’s depth of field reduces as the wavelength is increased beyond cutoff of the first-order diffracted components, and results are presented showing the trade-offs that can be made between depth of field and intensity enhancement. Examples are given for a 270-nm-period grating embedded in material with refractive index n = 1.6 and illuminated with wavelengths near 450 nm. Under these conditions it is predicted that high-intensity, high-contrast patterns with 135-nm period can be formed in photoresists more than 50 nm thick.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Wegscheider, A. Kirsch, J. Mlynek, G. Krausch, “Scanning near-field optical lithography,” Thin Solid Films 264, 264–267 (1995).
    [CrossRef]
  2. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
    [CrossRef]
  3. J. G. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett. 76, 667–669 (2000).
    [CrossRef]
  4. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
    [CrossRef]
  5. P. E. Dyer, R. J. Farley, R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
    [CrossRef]
  6. D. S. Hobbs, B. D. MacLeod, A. F. Kelsey, M. A. Leclerc, E. Sabatino, D. P. Resler, “Automated interference lithography systems for generation of sub-micron feature size patterns,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. A. Cox, eds., Proc. SPIE3879, 124–135 (1999).
    [CrossRef]
  7. D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, C. Vartuli, M. G. Young, “Advances in near field holographic grating mask technology,” J. Vac. Sci. Technol. B 12, 3689–3694 (1994).
    [CrossRef]
  8. W. H. Yeh, M. Mansuripur, M. Fallahi, R. S. Penner, “Talbot imaging with increased spatial frequency: a technique for replicating truncated self-imaging objects,” Opt. Commun. 170, 207–212 (1999).
    [CrossRef]
  9. C. H. Hafner, “Post-modern electromagnetics using intelligent Maxwell solvers,” (Wiley, Chichister, UK, 1998).
  10. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 75th ed. (CRC Press, Cleveland, Ohio, 1994).
  11. S. J. McNab, R. J. Blaikie, “Investigating the fundamental limit to resolution in the evanescent near field,” in Proceedings of Image and Vision Computing New Zealand 1999 (ICVNZ99), D. Pairman, H. North, eds. (Landcare Research Ltd., Lincoln, New Zealand, 1999), pp. 97–102.
  12. W. M. Moreau, Semiconductor Lithography: Principles, Practices, and Materials (Plenum, New York, 1988), pp. 373–376.
  13. E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997), pp. 28–30.

2000

J. G. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett. 76, 667–669 (2000).
[CrossRef]

1999

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

W. H. Yeh, M. Mansuripur, M. Fallahi, R. S. Penner, “Talbot imaging with increased spatial frequency: a technique for replicating truncated self-imaging objects,” Opt. Commun. 170, 207–212 (1999).
[CrossRef]

1995

P. E. Dyer, R. J. Farley, R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

S. Wegscheider, A. Kirsch, J. Mlynek, G. Krausch, “Scanning near-field optical lithography,” Thin Solid Films 264, 264–267 (1995).
[CrossRef]

1994

D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, C. Vartuli, M. G. Young, “Advances in near field holographic grating mask technology,” J. Vac. Sci. Technol. B 12, 3689–3694 (1994).
[CrossRef]

1992

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Blaikie, R. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

S. J. McNab, R. J. Blaikie, “Investigating the fundamental limit to resolution in the evanescent near field,” in Proceedings of Image and Vision Computing New Zealand 1999 (ICVNZ99), D. Pairman, H. North, eds. (Landcare Research Ltd., Lincoln, New Zealand, 1999), pp. 97–102.

Chang, C.-H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Cumming, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

Dreyer, K. F.

D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, C. Vartuli, M. G. Young, “Advances in near field holographic grating mask technology,” J. Vac. Sci. Technol. B 12, 3689–3694 (1994).
[CrossRef]

Dyer, P. E.

P. E. Dyer, R. J. Farley, R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

Fallahi, M.

W. H. Yeh, M. Mansuripur, M. Fallahi, R. S. Penner, “Talbot imaging with increased spatial frequency: a technique for replicating truncated self-imaging objects,” Opt. Commun. 170, 207–212 (1999).
[CrossRef]

Farley, R. J.

P. E. Dyer, R. J. Farley, R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

Feder, K.

D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, C. Vartuli, M. G. Young, “Advances in near field holographic grating mask technology,” J. Vac. Sci. Technol. B 12, 3689–3694 (1994).
[CrossRef]

Finn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Giedl, R.

P. E. Dyer, R. J. Farley, R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

Gnall, R. P.

D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, C. Vartuli, M. G. Young, “Advances in near field holographic grating mask technology,” J. Vac. Sci. Technol. B 12, 3689–3694 (1994).
[CrossRef]

Goodberlet, J. G.

J. G. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett. 76, 667–669 (2000).
[CrossRef]

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Hafner, C. H.

C. H. Hafner, “Post-modern electromagnetics using intelligent Maxwell solvers,” (Wiley, Chichister, UK, 1998).

Hobbs, D. S.

D. S. Hobbs, B. D. MacLeod, A. F. Kelsey, M. A. Leclerc, E. Sabatino, D. P. Resler, “Automated interference lithography systems for generation of sub-micron feature size patterns,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. A. Cox, eds., Proc. SPIE3879, 124–135 (1999).
[CrossRef]

Kelsey, A. F.

D. S. Hobbs, B. D. MacLeod, A. F. Kelsey, M. A. Leclerc, E. Sabatino, D. P. Resler, “Automated interference lithography systems for generation of sub-micron feature size patterns,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. A. Cox, eds., Proc. SPIE3879, 124–135 (1999).
[CrossRef]

Kirsch, A.

S. Wegscheider, A. Kirsch, J. Mlynek, G. Krausch, “Scanning near-field optical lithography,” Thin Solid Films 264, 264–267 (1995).
[CrossRef]

Koch, T. L.

D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, C. Vartuli, M. G. Young, “Advances in near field holographic grating mask technology,” J. Vac. Sci. Technol. B 12, 3689–3694 (1994).
[CrossRef]

Koren, U.

D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, C. Vartuli, M. G. Young, “Advances in near field holographic grating mask technology,” J. Vac. Sci. Technol. B 12, 3689–3694 (1994).
[CrossRef]

Krausch, G.

S. Wegscheider, A. Kirsch, J. Mlynek, G. Krausch, “Scanning near-field optical lithography,” Thin Solid Films 264, 264–267 (1995).
[CrossRef]

Kryder, M. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Leclerc, M. A.

D. S. Hobbs, B. D. MacLeod, A. F. Kelsey, M. A. Leclerc, E. Sabatino, D. P. Resler, “Automated interference lithography systems for generation of sub-micron feature size patterns,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. A. Cox, eds., Proc. SPIE3879, 124–135 (1999).
[CrossRef]

Loewen, E. G.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997), pp. 28–30.

MacLeod, B. D.

D. S. Hobbs, B. D. MacLeod, A. F. Kelsey, M. A. Leclerc, E. Sabatino, D. P. Resler, “Automated interference lithography systems for generation of sub-micron feature size patterns,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. A. Cox, eds., Proc. SPIE3879, 124–135 (1999).
[CrossRef]

Mansuripur, M.

W. H. Yeh, M. Mansuripur, M. Fallahi, R. S. Penner, “Talbot imaging with increased spatial frequency: a technique for replicating truncated self-imaging objects,” Opt. Commun. 170, 207–212 (1999).
[CrossRef]

McNab, S. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

S. J. McNab, R. J. Blaikie, “Investigating the fundamental limit to resolution in the evanescent near field,” in Proceedings of Image and Vision Computing New Zealand 1999 (ICVNZ99), D. Pairman, H. North, eds. (Landcare Research Ltd., Lincoln, New Zealand, 1999), pp. 97–102.

Miller, B. I.

D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, C. Vartuli, M. G. Young, “Advances in near field holographic grating mask technology,” J. Vac. Sci. Technol. B 12, 3689–3694 (1994).
[CrossRef]

Mlynek, J.

S. Wegscheider, A. Kirsch, J. Mlynek, G. Krausch, “Scanning near-field optical lithography,” Thin Solid Films 264, 264–267 (1995).
[CrossRef]

Moreau, W. M.

W. M. Moreau, Semiconductor Lithography: Principles, Practices, and Materials (Plenum, New York, 1988), pp. 373–376.

Penner, R. S.

W. H. Yeh, M. Mansuripur, M. Fallahi, R. S. Penner, “Talbot imaging with increased spatial frequency: a technique for replicating truncated self-imaging objects,” Opt. Commun. 170, 207–212 (1999).
[CrossRef]

Popov, E.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997), pp. 28–30.

Resler, D. P.

D. S. Hobbs, B. D. MacLeod, A. F. Kelsey, M. A. Leclerc, E. Sabatino, D. P. Resler, “Automated interference lithography systems for generation of sub-micron feature size patterns,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. A. Cox, eds., Proc. SPIE3879, 124–135 (1999).
[CrossRef]

Sabatino, E.

D. S. Hobbs, B. D. MacLeod, A. F. Kelsey, M. A. Leclerc, E. Sabatino, D. P. Resler, “Automated interference lithography systems for generation of sub-micron feature size patterns,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. A. Cox, eds., Proc. SPIE3879, 124–135 (1999).
[CrossRef]

Tennant, D. M.

D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, C. Vartuli, M. G. Young, “Advances in near field holographic grating mask technology,” J. Vac. Sci. Technol. B 12, 3689–3694 (1994).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Vartuli, C.

D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, C. Vartuli, M. G. Young, “Advances in near field holographic grating mask technology,” J. Vac. Sci. Technol. B 12, 3689–3694 (1994).
[CrossRef]

Wegscheider, S.

S. Wegscheider, A. Kirsch, J. Mlynek, G. Krausch, “Scanning near-field optical lithography,” Thin Solid Films 264, 264–267 (1995).
[CrossRef]

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Yeh, W. H.

W. H. Yeh, M. Mansuripur, M. Fallahi, R. S. Penner, “Talbot imaging with increased spatial frequency: a technique for replicating truncated self-imaging objects,” Opt. Commun. 170, 207–212 (1999).
[CrossRef]

Young, M. G.

D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, C. Vartuli, M. G. Young, “Advances in near field holographic grating mask technology,” J. Vac. Sci. Technol. B 12, 3689–3694 (1994).
[CrossRef]

Appl. Phys. Lett.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999).
[CrossRef]

J. G. Goodberlet, “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett. 76, 667–669 (2000).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

J. Vac. Sci. Technol. B

D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, C. Vartuli, M. G. Young, “Advances in near field holographic grating mask technology,” J. Vac. Sci. Technol. B 12, 3689–3694 (1994).
[CrossRef]

Opt. Commun.

W. H. Yeh, M. Mansuripur, M. Fallahi, R. S. Penner, “Talbot imaging with increased spatial frequency: a technique for replicating truncated self-imaging objects,” Opt. Commun. 170, 207–212 (1999).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

Thin Solid Films

S. Wegscheider, A. Kirsch, J. Mlynek, G. Krausch, “Scanning near-field optical lithography,” Thin Solid Films 264, 264–267 (1995).
[CrossRef]

Other

D. S. Hobbs, B. D. MacLeod, A. F. Kelsey, M. A. Leclerc, E. Sabatino, D. P. Resler, “Automated interference lithography systems for generation of sub-micron feature size patterns,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. A. Cox, eds., Proc. SPIE3879, 124–135 (1999).
[CrossRef]

C. H. Hafner, “Post-modern electromagnetics using intelligent Maxwell solvers,” (Wiley, Chichister, UK, 1998).

D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 75th ed. (CRC Press, Cleveland, Ohio, 1994).

S. J. McNab, R. J. Blaikie, “Investigating the fundamental limit to resolution in the evanescent near field,” in Proceedings of Image and Vision Computing New Zealand 1999 (ICVNZ99), D. Pairman, H. North, eds. (Landcare Research Ltd., Lincoln, New Zealand, 1999), pp. 97–102.

W. M. Moreau, Semiconductor Lithography: Principles, Practices, and Materials (Plenum, New York, 1988), pp. 373–376.

E. G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997), pp. 28–30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram illustrating the grating geometry and illumination conditions used for the simulations.

Fig. 2
Fig. 2

(a) and (b) Intensity plots of a 40-nm-thick chrome grating of 270-nm period illuminated by 454- and 432-nm TM-polarized light, respectively. The grating is suspended in a lossless photoresist (n = 1.6). Contour plots of the normalized electric field intensity are shown |E| 2/|E 0|2, where E 0 is the incident electric field. The scale varies linearly from 0 (black) to 2 (white) in ten steps. (c) and (d) Curve plots of the normalized electric field intensity for incident illumination of 454 and 432 nm, respectively. Profiles are taken parallel to the x axis at depths as indicated. The origin y = 0 is at the exit aperture of the grating.

Fig. 3
Fig. 3

(a) Decay of the peak intensity in the interference pattern with distance beneath the exit plane for a 270-nm-period grating illuminated at 454 nm in a medium with refractive index n = 1.6. Solid curve, simulation results. Short-dashed curve, fitted exponential decay using decay length from Eq. (3). Long-dashed curve, empirical fit for short decay close to grating. (b) Intensity decay length y 0 I as a function of illumination wavelength. The first-order cutoff wavelength λ1 is indicated. Solid curve, extracted from simulation results. Dashed curve, with Eq. (3).

Fig. 4
Fig. 4

Peak intensity in the interference as a function of illumination wavelength at various distances below the exit plane of a 270-nm-period grating. The first-order cutoff wavelength λ1 is indicated.

Fig. 5
Fig. 5

(a) Wavelength dependence of amplitude transmission coefficients for zeroth-, first-, and second-order diffracted beams, t 0, t 1, and t 2, respectively. The grating parameters are the same as in Figs. 3 and 4. For wavelengths beyond cutoff for a particular diffracted order the transmission coefficient is determined from the amplitude of the evanescently decaying electric field at the exit plane of the grating. (b) Wavelength dependence of the reflection coefficients for zeroth-, first-, and second-order diffracted beams, r 0, r 1, and r 2, respectively. For wavelengths beyond cutoff the reflection coefficient is determined from the amplitude of the evanescently decaying electric field at the entry plane of the grating.

Fig. 6
Fig. 6

(a) Intensity plot of a 40-nm-thick chrome grating of 270-nm period illuminated by 454-nm TM-polarized light. The grating is suspended in an absorbing resist ∊ = 2.56 - j0.07. Contour plots of the normalized electric field intensity are shown |E| 2/|E 0|2, where E 0 is the incident electric field. The scale varies linearly from 0 (black) to 2 (white) in ten steps. (b) Corresponding curve plots of the normalized electric field intensity, profiles are taken parallel to the x axis at depths as indicated. The origin y = 0 is at the exit aperture of the grating.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λm=np1+|sin θ|m,
Iy=I0+I1 expy/y0I,
y0I=14π1p2-n2λ21/2,
|Ei±y|=|Ai|expyy0,iE,
y0,iE=12πi2p2-n2λ21/2.

Metrics