Abstract

The responsivity of an extreme-ultraviolet transmission grating spectrometer with silicon photodiode detectors was measured with synchrotron radiation. The spectrometer was designed to record the absolute radiation flux in a wavelength bandpass centered at 30 nm. The transmission grating had a period of 200 nm and relatively high efficiencies in the +1 and the -1 diffraction orders that were dispersed on either side of the zero-order beam. Three photodiodes were positioned to measure the signals in the zero order and in the +1 and -1 orders. The photodiodes had aluminum overcoatings that passed the desired wavelength bandpass centered at 30 nm and attenuated higher-order radiation and wavelengths longer than approximately 80 nm. The spectrometer’s responsivity, the ratio of the photodiode current to the incident radiation power, was determined as a function of the incident wavelength and the angle of the spectrometer with respect to the incident radiation beam. The spectrometer’s responsivity was consistent with the product of the photodiode responsivity and the grating efficiency, both of which were separately measured while removed from the spectrometer.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
    [CrossRef]
  2. D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
    [CrossRef]
  3. D. L. Judge, D. R. McMullin, H. S. Ogawa, “Absolute solar 30.4 nm flux from sounding rocket observations during the solar cycle 23 minimum,” J. Geophys. Res. 104, 28321–28324 (1999).
    [CrossRef]
  4. R. Korde, J. Geist, “Quantum efficiency of silicon photodiodes,” Appl. Opt. 26, 5284–5290 (1987).
    [CrossRef] [PubMed]
  5. L. R. Canfield, J. Kerner, R. Korde, “Stability and quantum efficiency performance of silicon photodiode detectors in the far ultraviolet,” Appl. Opt. 28, 3940–3943 (1989).
    [CrossRef] [PubMed]
  6. R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
    [CrossRef]
  7. H. O. Funsten, D. M. Suszcynsky, S. M. Ritzau, R. Korde, “Response of 100% internal quantum efficiency silicon photodiodes to 200 eV–40 keV electrons,” IEEE Trans. Nucl. Sci. 44, 2561–2565 (1997).
    [CrossRef]
  8. L. R. Canfield, “Photodiode detectors,” in Vacuum Ultraviolet Spectroscopy II, J. A. R. Samson, D. L. Ederer, eds. (Academic, San Diego, Calif., 1998).
    [CrossRef]
  9. F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron–hole pair creation energy in crystalline silicon for photons in the 50–1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
    [CrossRef]
  10. F. Scholze, H. Rabus, G. Ulm, “Spectral responsivity of silicon photodiodes: high-accuracy measurement and improved self calibration in the soft x-ray spectral range,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE2808, 534–543 (1996).
    [CrossRef]
  11. E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
    [CrossRef]
  12. J. F. Seely, “Responsivity model for a silicon photodiode in the extreme ultraviolet,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. W. Siegmund, B. E. Woodgate, eds., Proc. SPIE4139, 1–7 (2000).
    [CrossRef]
  13. W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. A 246, 465–468 (1986).
    [CrossRef]
  14. J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
    [CrossRef]
  15. R. Vest, Electron and Optical Physics Division, National Institutes of Standards and Technology (personal communication, 1999).
  16. M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, I. Plotnik, J. Porter, H. I. Smith, “Fabrication of high energy x-ray transmission gratings for AXAF,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy V, O. H. Siegmund, J. V. Vallerga, eds., Proc. SPIE2280, 181–190 (1994).
    [CrossRef]
  17. M. M. Balkey, E. E. Scime, M. L. Schattenburg, J. van Beek, “Effects of gap width on vacuum-ultraviolet transmission through submicrometer-period, freestanding transmission gratings,” Appl. Opt. 37, 5087–5092 (1998).
    [CrossRef]
  18. J. F. Seely, R. S. Korde, F. A. Hanser, J. Wise, G. E. Holland, J. Weaver, J. C. Rife, “Characterization of silicon photodiode detectors with multilayer filter coatings for 17 to 150 Å,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, B. E. Woodgate, R. A. Kimble, eds., Proc. SPIE3764, 103–109 (1999).
    [CrossRef]
  19. E. D. Palik, “Handbook of Optical Constants of Solids (Academic, New York, 1985).
  20. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). Updated optical constants were obtained from the following URL: http://cindy.lbl.gov/optical_constants .

1999 (1)

D. L. Judge, D. R. McMullin, H. S. Ogawa, “Absolute solar 30.4 nm flux from sounding rocket observations during the solar cycle 23 minimum,” J. Geophys. Res. 104, 28321–28324 (1999).
[CrossRef]

1998 (2)

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

M. M. Balkey, E. E. Scime, M. L. Schattenburg, J. van Beek, “Effects of gap width on vacuum-ultraviolet transmission through submicrometer-period, freestanding transmission gratings,” Appl. Opt. 37, 5087–5092 (1998).
[CrossRef]

1997 (1)

H. O. Funsten, D. M. Suszcynsky, S. M. Ritzau, R. Korde, “Response of 100% internal quantum efficiency silicon photodiodes to 200 eV–40 keV electrons,” IEEE Trans. Nucl. Sci. 44, 2561–2565 (1997).
[CrossRef]

1996 (2)

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron–hole pair creation energy in crystalline silicon for photons in the 50–1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

1993 (3)

H. S. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
[CrossRef]

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). Updated optical constants were obtained from the following URL: http://cindy.lbl.gov/optical_constants .

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

1989 (2)

L. R. Canfield, J. Kerner, R. Korde, “Stability and quantum efficiency performance of silicon photodiode detectors in the far ultraviolet,” Appl. Opt. 28, 3940–3943 (1989).
[CrossRef] [PubMed]

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

1987 (1)

1986 (1)

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. A 246, 465–468 (1986).
[CrossRef]

Aucoin, R. J.

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, I. Plotnik, J. Porter, H. I. Smith, “Fabrication of high energy x-ray transmission gratings for AXAF,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy V, O. H. Siegmund, J. V. Vallerga, eds., Proc. SPIE2280, 181–190 (1994).
[CrossRef]

Balkey, M. M.

Cable, J. S.

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

Canfield, L. R.

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

L. R. Canfield, J. Kerner, R. Korde, “Stability and quantum efficiency performance of silicon photodiode detectors in the far ultraviolet,” Appl. Opt. 28, 3940–3943 (1989).
[CrossRef] [PubMed]

L. R. Canfield, “Photodiode detectors,” in Vacuum Ultraviolet Spectroscopy II, J. A. R. Samson, D. L. Ederer, eds. (Academic, San Diego, Calif., 1998).
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). Updated optical constants were obtained from the following URL: http://cindy.lbl.gov/optical_constants .

Fleming, R. C.

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, I. Plotnik, J. Porter, H. I. Smith, “Fabrication of high energy x-ray transmission gratings for AXAF,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy V, O. H. Siegmund, J. V. Vallerga, eds., Proc. SPIE2280, 181–190 (1994).
[CrossRef]

Funsten, H. O.

H. O. Funsten, D. M. Suszcynsky, S. M. Ritzau, R. Korde, “Response of 100% internal quantum efficiency silicon photodiodes to 200 eV–40 keV electrons,” IEEE Trans. Nucl. Sci. 44, 2561–2565 (1997).
[CrossRef]

Geist, J.

Gullikson, E. M.

E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). Updated optical constants were obtained from the following URL: http://cindy.lbl.gov/optical_constants .

Hanser, F. A.

J. F. Seely, R. S. Korde, F. A. Hanser, J. Wise, G. E. Holland, J. Weaver, J. C. Rife, “Characterization of silicon photodiode detectors with multilayer filter coatings for 17 to 150 Å,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, B. E. Woodgate, R. A. Kimble, eds., Proc. SPIE3764, 103–109 (1999).
[CrossRef]

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). Updated optical constants were obtained from the following URL: http://cindy.lbl.gov/optical_constants .

Hilchenbach, M.

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

Holland, G. E.

J. F. Seely, R. S. Korde, F. A. Hanser, J. Wise, G. E. Holland, J. Weaver, J. C. Rife, “Characterization of silicon photodiode detectors with multilayer filter coatings for 17 to 150 Å,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, B. E. Woodgate, R. A. Kimble, eds., Proc. SPIE3764, 103–109 (1999).
[CrossRef]

Hovestadt, D.

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

Hunter, W. R.

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. A 246, 465–468 (1986).
[CrossRef]

Judge, D. L.

D. L. Judge, D. R. McMullin, H. S. Ogawa, “Absolute solar 30.4 nm flux from sounding rocket observations during the solar cycle 23 minimum,” J. Geophys. Res. 104, 28321–28324 (1999).
[CrossRef]

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

H. S. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
[CrossRef]

Kerner, J.

Klecker, B.

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

Korde, R.

H. O. Funsten, D. M. Suszcynsky, S. M. Ritzau, R. Korde, “Response of 100% internal quantum efficiency silicon photodiodes to 200 eV–40 keV electrons,” IEEE Trans. Nucl. Sci. 44, 2561–2565 (1997).
[CrossRef]

E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

H. S. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
[CrossRef]

L. R. Canfield, J. Kerner, R. Korde, “Stability and quantum efficiency performance of silicon photodiode detectors in the far ultraviolet,” Appl. Opt. 28, 3940–3943 (1989).
[CrossRef] [PubMed]

R. Korde, J. Geist, “Quantum efficiency of silicon photodiodes,” Appl. Opt. 26, 5284–5290 (1987).
[CrossRef] [PubMed]

Korde, R. S.

J. F. Seely, R. S. Korde, F. A. Hanser, J. Wise, G. E. Holland, J. Weaver, J. C. Rife, “Characterization of silicon photodiode detectors with multilayer filter coatings for 17 to 150 Å,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, B. E. Woodgate, R. A. Kimble, eds., Proc. SPIE3764, 103–109 (1999).
[CrossRef]

Kühne, M.

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

McMullin, D. R.

D. L. Judge, D. R. McMullin, H. S. Ogawa, “Absolute solar 30.4 nm flux from sounding rocket observations during the solar cycle 23 minimum,” J. Geophys. Res. 104, 28321–28324 (1999).
[CrossRef]

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

H. S. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
[CrossRef]

Möbius, E.

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

Ogawa, H. S.

D. L. Judge, D. R. McMullin, H. S. Ogawa, “Absolute solar 30.4 nm flux from sounding rocket observations during the solar cycle 23 minimum,” J. Geophys. Res. 104, 28321–28324 (1999).
[CrossRef]

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

H. S. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
[CrossRef]

Palik, E. D.

E. D. Palik, “Handbook of Optical Constants of Solids (Academic, New York, 1985).

Plotnik, I.

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, I. Plotnik, J. Porter, H. I. Smith, “Fabrication of high energy x-ray transmission gratings for AXAF,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy V, O. H. Siegmund, J. V. Vallerga, eds., Proc. SPIE2280, 181–190 (1994).
[CrossRef]

Porter, J.

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, I. Plotnik, J. Porter, H. I. Smith, “Fabrication of high energy x-ray transmission gratings for AXAF,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy V, O. H. Siegmund, J. V. Vallerga, eds., Proc. SPIE2280, 181–190 (1994).
[CrossRef]

Rabus, H.

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron–hole pair creation energy in crystalline silicon for photons in the 50–1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

F. Scholze, H. Rabus, G. Ulm, “Spectral responsivity of silicon photodiodes: high-accuracy measurement and improved self calibration in the soft x-ray spectral range,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE2808, 534–543 (1996).
[CrossRef]

Rife, J. C.

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. A 246, 465–468 (1986).
[CrossRef]

J. F. Seely, R. S. Korde, F. A. Hanser, J. Wise, G. E. Holland, J. Weaver, J. C. Rife, “Characterization of silicon photodiode detectors with multilayer filter coatings for 17 to 150 Å,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, B. E. Woodgate, R. A. Kimble, eds., Proc. SPIE3764, 103–109 (1999).
[CrossRef]

Ritzau, S. M.

H. O. Funsten, D. M. Suszcynsky, S. M. Ritzau, R. Korde, “Response of 100% internal quantum efficiency silicon photodiodes to 200 eV–40 keV electrons,” IEEE Trans. Nucl. Sci. 44, 2561–2565 (1997).
[CrossRef]

Sadeghi, H. R.

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

Schattenburg, M. L.

M. M. Balkey, E. E. Scime, M. L. Schattenburg, J. van Beek, “Effects of gap width on vacuum-ultraviolet transmission through submicrometer-period, freestanding transmission gratings,” Appl. Opt. 37, 5087–5092 (1998).
[CrossRef]

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, I. Plotnik, J. Porter, H. I. Smith, “Fabrication of high energy x-ray transmission gratings for AXAF,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy V, O. H. Siegmund, J. V. Vallerga, eds., Proc. SPIE2280, 181–190 (1994).
[CrossRef]

Scholze, F.

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron–hole pair creation energy in crystalline silicon for photons in the 50–1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

F. Scholze, H. Rabus, G. Ulm, “Spectral responsivity of silicon photodiodes: high-accuracy measurement and improved self calibration in the soft x-ray spectral range,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE2808, 534–543 (1996).
[CrossRef]

Scime, E. E.

Seely, J. F.

J. F. Seely, R. S. Korde, F. A. Hanser, J. Wise, G. E. Holland, J. Weaver, J. C. Rife, “Characterization of silicon photodiode detectors with multilayer filter coatings for 17 to 150 Å,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, B. E. Woodgate, R. A. Kimble, eds., Proc. SPIE3764, 103–109 (1999).
[CrossRef]

J. F. Seely, “Responsivity model for a silicon photodiode in the extreme ultraviolet,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. W. Siegmund, B. E. Woodgate, eds., Proc. SPIE4139, 1–7 (2000).
[CrossRef]

Smith, H. I.

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, I. Plotnik, J. Porter, H. I. Smith, “Fabrication of high energy x-ray transmission gratings for AXAF,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy V, O. H. Siegmund, J. V. Vallerga, eds., Proc. SPIE2280, 181–190 (1994).
[CrossRef]

Suszcynsky, D. M.

H. O. Funsten, D. M. Suszcynsky, S. M. Ritzau, R. Korde, “Response of 100% internal quantum efficiency silicon photodiodes to 200 eV–40 keV electrons,” IEEE Trans. Nucl. Sci. 44, 2561–2565 (1997).
[CrossRef]

Tarrio, C.

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

Ulm, G.

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron–hole pair creation energy in crystalline silicon for photons in the 50–1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

F. Scholze, H. Rabus, G. Ulm, “Spectral responsivity of silicon photodiodes: high-accuracy measurement and improved self calibration in the soft x-ray spectral range,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE2808, 534–543 (1996).
[CrossRef]

van Beek, J.

Vest, R.

R. Vest, Electron and Optical Physics Division, National Institutes of Standards and Technology (personal communication, 1999).

Vest, R. E.

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

Watts, R.

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

Weaver, J.

J. F. Seely, R. S. Korde, F. A. Hanser, J. Wise, G. E. Holland, J. Weaver, J. C. Rife, “Characterization of silicon photodiode detectors with multilayer filter coatings for 17 to 150 Å,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, B. E. Woodgate, R. A. Kimble, eds., Proc. SPIE3764, 103–109 (1999).
[CrossRef]

Wise, J.

J. F. Seely, R. S. Korde, F. A. Hanser, J. Wise, G. E. Holland, J. Weaver, J. C. Rife, “Characterization of silicon photodiode detectors with multilayer filter coatings for 17 to 150 Å,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, B. E. Woodgate, R. A. Kimble, eds., Proc. SPIE3764, 103–109 (1999).
[CrossRef]

Wurz, P.

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron–hole pair creation energy in crystalline silicon for photons in the 50–1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996).
[CrossRef]

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). Updated optical constants were obtained from the following URL: http://cindy.lbl.gov/optical_constants .

IEEE Trans. Nucl. Sci. (2)

R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993).
[CrossRef]

H. O. Funsten, D. M. Suszcynsky, S. M. Ritzau, R. Korde, “Response of 100% internal quantum efficiency silicon photodiodes to 200 eV–40 keV electrons,” IEEE Trans. Nucl. Sci. 44, 2561–2565 (1997).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom. (1)

E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[CrossRef]

J. Geophys. Res. (1)

D. L. Judge, D. R. McMullin, H. S. Ogawa, “Absolute solar 30.4 nm flux from sounding rocket observations during the solar cycle 23 minimum,” J. Geophys. Res. 104, 28321–28324 (1999).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

W. R. Hunter, J. C. Rife, “An ultrahigh vacuum reflectometer/goniometer for use with synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. A 246, 465–468 (1986).
[CrossRef]

Opt. Eng. (1)

H. S. Ogawa, D. R. McMullin, D. L. Judge, R. Korde, “Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurements,” Opt. Eng. 32, 3121–3125 (1993).
[CrossRef]

Rev. Sci. Instrum. (1)

J. C. Rife, H. R. Sadeghi, W. R. Hunter, “Upgrades and recent performance of the grating/crystal monochromator,” Rev. Sci. Instrum. 60, 2064–2067 (1989).
[CrossRef]

Sol. Phys. (1)

D. L. Judge, D. R. McMullin, H. S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L. R. Canfield, R. E. Vest, R. Watts, C. Tarrio, M. Kühne, P. Wurz, “First solar EUV irradiances obtained from SOHO by the CELIAS/SEM,” Sol. Phys. 177, 161–173 (1998).
[CrossRef]

Other (7)

F. Scholze, H. Rabus, G. Ulm, “Spectral responsivity of silicon photodiodes: high-accuracy measurement and improved self calibration in the soft x-ray spectral range,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE2808, 534–543 (1996).
[CrossRef]

L. R. Canfield, “Photodiode detectors,” in Vacuum Ultraviolet Spectroscopy II, J. A. R. Samson, D. L. Ederer, eds. (Academic, San Diego, Calif., 1998).
[CrossRef]

R. Vest, Electron and Optical Physics Division, National Institutes of Standards and Technology (personal communication, 1999).

M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, I. Plotnik, J. Porter, H. I. Smith, “Fabrication of high energy x-ray transmission gratings for AXAF,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy V, O. H. Siegmund, J. V. Vallerga, eds., Proc. SPIE2280, 181–190 (1994).
[CrossRef]

J. F. Seely, “Responsivity model for a silicon photodiode in the extreme ultraviolet,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. W. Siegmund, B. E. Woodgate, eds., Proc. SPIE4139, 1–7 (2000).
[CrossRef]

J. F. Seely, R. S. Korde, F. A. Hanser, J. Wise, G. E. Holland, J. Weaver, J. C. Rife, “Characterization of silicon photodiode detectors with multilayer filter coatings for 17 to 150 Å,” in Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III, S. Fineschi, B. E. Woodgate, R. A. Kimble, eds., Proc. SPIE3764, 103–109 (1999).
[CrossRef]

E. D. Palik, “Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the spectrometer showing the incident beam (IB), the transmission grating (TG), the three photodiodes, and the 0 and the ±1 diffraction orders. The incident synchrotron radiation is polarized in the dispersion plane, with the electric field vector perpendicular to the grating bars.

Fig. 2
Fig. 2

Intensity profile of the incident beam (a) at a distance of 130 cm in front of the spectrometer’s transmission grating and (b) at the position of the transmission grating. The incident wavelength was 29.5 nm. The X direction is horizontal, and the Y direction is vertical. The contour values are (a) 0.01, 0.04, 0.07, 0.10, 0.13, 0.16, and 0.19 and (b) 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, and 1.5.

Fig. 3
Fig. 3

Relative incident beam intensity in (a) the horizontal direction and (b) the vertical direction at a distance of 130 cm in front of the spectrometer’s transmission grating. The data points were derived by means of stepping a detector with a 150-µm circular aperture through the incident beam. The incident wavelength was 29.5 nm.

Fig. 4
Fig. 4

Relative incident beam intensity in (a) the horizontal direction and (b) the vertical direction at the position of the spectrometer’s transmission grating. The small triangular data points were obtained by means of stepping detectors with 100-µm-wide slit apertures through the incident beam. The large square data points were derived by means of stepping a detector with a 570-µm circular aperture through the incident beam. The incident wavelength was 29.5 nm.

Fig. 5
Fig. 5

Zero-order signal measured when the spectrometer was moved across the incident beam in (a) the horizontal direction and (b) the vertical direction. (c) is the signal measured when the spectrometer was rotated with respect to the incident beam. The incident wavelength was 29.5 nm.

Fig. 6
Fig. 6

Transmission grating efficiency measured for incident wavelengths of (a) 8.86 nm and (b) 30.4 nm. The diffraction orders are indicated.

Fig. 7
Fig. 7

Peak efficiencies in the indicated orders that were derived from the detector angular scans at fixed incident wavelengths. Straight lines were drawn between the data points.

Fig. 8
Fig. 8

(a) Measured transmittance of an aluminum coating on a photodiode (data points) and the calculated transmittance of an aluminum coating with 200 nm thickness (curve). (b) The measured (data points) and the calculated (curve) transmittances of the aluminum coatings on the spectrometer’s three photodiodes.

Fig. 9
Fig. 9

Relative I/ I o signals measured in the zero diffraction order by PD#2, the +1 order by PD#1, and the -1 order by PD#3.

Fig. 10
Fig. 10

Responsivities in the +1 and the -1 diffraction orders measured by PD#1 and PD#3, respectively, at the indicated angles of the spectrometer axis with respect to the incident beam.

Fig. 11
Fig. 11

Measured responsivity in the spectrometer’s zero-order channel (data points) and the zero-order responsivity derived from the measured grating efficiency and PD#2 responsivity (curve).

Metrics