Abstract

Thermal stabilities of three-cavity narrow-bandpass (NB) filters with high-index half-wave spacers and 78–102 layers of Ta2O5 and SiO2 prepared by reactive ion-assisted bipolar direct-current (dc) magnetron sputtering of tantalum and silicon targets, respectively, were investigated. Pure argon and pure oxygen were used as the sputtering gas and the reactant, respectively. The oxygen gas was introduced and ionized through the ion gun and toward the unheated BK7 glass substrate. The refractive indices of single-layer Ta2O5 and SiO2 films were 2.1 and 1.45, respectively, at 1550 nm, which were comparable with those of films prepared by other ion-assisted coating techniques. The moisture-resistant properties of the films were excellent as evidenced from the water-immersion test, implying that the packing density of the films was close to that of their bulk materials. The temperature-dependant wavelength shifts of the NB filters were <3 × 10-3 nm/°C at temperatures of <75 °C, indicating that the temperature-induced wavelength shift of the filter was <0.15 nm when the temperatures were raised from room temperature to 75 °C, which was compliant with Bellcore GR-1209-CORE generic requirements of NB filters used for optical-fiber communication systems.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Chua, B. Cai, “Component technology enables high-capacity DWDM systems,” Lightwave (August1998), pp. 64–69.
  2. J. Minowa, Y. Fujii, “Dielectric multilayer thin-film filters for WDM transmission systems,” J. Lightwave Technol. LT-1, 116–121 (1983).
    [CrossRef]
  3. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Macmillan, New York, 1986), pp. 244–257.
  4. P. Baumeister, “Bandpass filters for wavelength division multiplexing—modification of the spectral bandwidth,” Appl. Opt. 37, 6609–6614 (1998).
    [CrossRef]
  5. H. A. Macleod, Thin-film Optical Filters (Hilger, Bristol, UK, 1986), pp. 357–407.
  6. R.-Y. Tsai, S.-C. Shiau, C.-H. Lee, F. C. Ho, M.-Y. Hua, “Properties of optical thin films and coatings prepared by reactive electron-beam deposition with and without ion bombardments,” Opt. Eng. 36, 3433–3438 (1997).
    [CrossRef]
  7. P. J. Martin, R. P. Netterfield, “Optimization of deposition parameters in ion-assisted deposition of optical thin films,” Thin Solid Films 199, 351–358 (1991).
    [CrossRef]
  8. P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage, L. Wielunski, “Properties of thin films of tantalum oxide deposited by ion-assisted deposition,” Thin Solid Films 239, 181–185 (1994).
    [CrossRef]
  9. S. Shibata, “Dielectric constants of Ta2O5 thin films deposited by r.f. sputtering,” Thin Solid Films 277, 1–4 (1996).
    [CrossRef]
  10. S. M. Edlou, A. Smajkiewicz, G. A. Al-Jumaily, “Optical properties and environmental stability of oxide coatings deposited by reactive sputtering,” Appl. Opt. 32, 5601–5605 (1993).
    [CrossRef] [PubMed]
  11. J. R. Sites, H. Demiryont, D. B. Kerwin, “Ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656 (1985).
    [CrossRef]
  12. M. A. Scobey, “Low pressure reactive magnetron sputtering apparatus and method,” U.S. patent5,525,199 (11June1996).
  13. H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta 19, 1–28 (1972).
    [CrossRef]
  14. R. Sawnepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
    [CrossRef]
  15. G. Mohan Rao, S. Mohan, “Studies on grow-discharge characteristics during dc reactive magnetron sputtering,” J. Appl. Phys.69, 6652–6655 (1991).
  16. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995).
    [CrossRef] [PubMed]
  17. A. Zoller, R. Gotzelmann, K. Matl, D. Cushing, “Temperature-stable bandpass filters deposited with plasma ion-assisted deposition,” Appl. Opt. 35, 5609–5612 (1996).
    [CrossRef] [PubMed]

1998 (2)

R. Chua, B. Cai, “Component technology enables high-capacity DWDM systems,” Lightwave (August1998), pp. 64–69.

P. Baumeister, “Bandpass filters for wavelength division multiplexing—modification of the spectral bandwidth,” Appl. Opt. 37, 6609–6614 (1998).
[CrossRef]

1997 (1)

R.-Y. Tsai, S.-C. Shiau, C.-H. Lee, F. C. Ho, M.-Y. Hua, “Properties of optical thin films and coatings prepared by reactive electron-beam deposition with and without ion bombardments,” Opt. Eng. 36, 3433–3438 (1997).
[CrossRef]

1996 (2)

1995 (1)

1994 (1)

P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage, L. Wielunski, “Properties of thin films of tantalum oxide deposited by ion-assisted deposition,” Thin Solid Films 239, 181–185 (1994).
[CrossRef]

1993 (1)

1991 (2)

P. J. Martin, R. P. Netterfield, “Optimization of deposition parameters in ion-assisted deposition of optical thin films,” Thin Solid Films 199, 351–358 (1991).
[CrossRef]

G. Mohan Rao, S. Mohan, “Studies on grow-discharge characteristics during dc reactive magnetron sputtering,” J. Appl. Phys.69, 6652–6655 (1991).

1985 (1)

J. R. Sites, H. Demiryont, D. B. Kerwin, “Ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656 (1985).
[CrossRef]

1983 (2)

J. Minowa, Y. Fujii, “Dielectric multilayer thin-film filters for WDM transmission systems,” J. Lightwave Technol. LT-1, 116–121 (1983).
[CrossRef]

R. Sawnepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
[CrossRef]

1972 (1)

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

Al-Jumaily, G. A.

Baumeister, P.

Bendavid, A.

P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage, L. Wielunski, “Properties of thin films of tantalum oxide deposited by ion-assisted deposition,” Thin Solid Films 239, 181–185 (1994).
[CrossRef]

Cai, B.

R. Chua, B. Cai, “Component technology enables high-capacity DWDM systems,” Lightwave (August1998), pp. 64–69.

Chua, R.

R. Chua, B. Cai, “Component technology enables high-capacity DWDM systems,” Lightwave (August1998), pp. 64–69.

Cushing, D.

Demiryont, H.

J. R. Sites, H. Demiryont, D. B. Kerwin, “Ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656 (1985).
[CrossRef]

Drage, D.

P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage, L. Wielunski, “Properties of thin films of tantalum oxide deposited by ion-assisted deposition,” Thin Solid Films 239, 181–185 (1994).
[CrossRef]

Edlou, S. M.

Fujii, Y.

J. Minowa, Y. Fujii, “Dielectric multilayer thin-film filters for WDM transmission systems,” J. Lightwave Technol. LT-1, 116–121 (1983).
[CrossRef]

Gotzelmann, R.

Ho, F. C.

R.-Y. Tsai, S.-C. Shiau, C.-H. Lee, F. C. Ho, M.-Y. Hua, “Properties of optical thin films and coatings prepared by reactive electron-beam deposition with and without ion bombardments,” Opt. Eng. 36, 3433–3438 (1997).
[CrossRef]

Hua, M.-Y.

R.-Y. Tsai, S.-C. Shiau, C.-H. Lee, F. C. Ho, M.-Y. Hua, “Properties of optical thin films and coatings prepared by reactive electron-beam deposition with and without ion bombardments,” Opt. Eng. 36, 3433–3438 (1997).
[CrossRef]

Kerwin, D. B.

J. R. Sites, H. Demiryont, D. B. Kerwin, “Ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656 (1985).
[CrossRef]

Kinder, T. J.

P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage, L. Wielunski, “Properties of thin films of tantalum oxide deposited by ion-assisted deposition,” Thin Solid Films 239, 181–185 (1994).
[CrossRef]

Lee, C.-H.

R.-Y. Tsai, S.-C. Shiau, C.-H. Lee, F. C. Ho, M.-Y. Hua, “Properties of optical thin films and coatings prepared by reactive electron-beam deposition with and without ion bombardments,” Opt. Eng. 36, 3433–3438 (1997).
[CrossRef]

Macleod, H. A.

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Macmillan, New York, 1986), pp. 244–257.

H. A. Macleod, Thin-film Optical Filters (Hilger, Bristol, UK, 1986), pp. 357–407.

Martin, P. J.

P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage, L. Wielunski, “Properties of thin films of tantalum oxide deposited by ion-assisted deposition,” Thin Solid Films 239, 181–185 (1994).
[CrossRef]

P. J. Martin, R. P. Netterfield, “Optimization of deposition parameters in ion-assisted deposition of optical thin films,” Thin Solid Films 199, 351–358 (1991).
[CrossRef]

Matl, K.

Minowa, J.

J. Minowa, Y. Fujii, “Dielectric multilayer thin-film filters for WDM transmission systems,” J. Lightwave Technol. LT-1, 116–121 (1983).
[CrossRef]

Mohan, S.

G. Mohan Rao, S. Mohan, “Studies on grow-discharge characteristics during dc reactive magnetron sputtering,” J. Appl. Phys.69, 6652–6655 (1991).

Mohan Rao, G.

G. Mohan Rao, S. Mohan, “Studies on grow-discharge characteristics during dc reactive magnetron sputtering,” J. Appl. Phys.69, 6652–6655 (1991).

Netterfield, R. P.

P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage, L. Wielunski, “Properties of thin films of tantalum oxide deposited by ion-assisted deposition,” Thin Solid Films 239, 181–185 (1994).
[CrossRef]

P. J. Martin, R. P. Netterfield, “Optimization of deposition parameters in ion-assisted deposition of optical thin films,” Thin Solid Films 199, 351–358 (1991).
[CrossRef]

Sainty, W. G.

P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage, L. Wielunski, “Properties of thin films of tantalum oxide deposited by ion-assisted deposition,” Thin Solid Films 239, 181–185 (1994).
[CrossRef]

Sawnepoel, R.

R. Sawnepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
[CrossRef]

Scobey, M. A.

M. A. Scobey, “Low pressure reactive magnetron sputtering apparatus and method,” U.S. patent5,525,199 (11June1996).

Shiau, S.-C.

R.-Y. Tsai, S.-C. Shiau, C.-H. Lee, F. C. Ho, M.-Y. Hua, “Properties of optical thin films and coatings prepared by reactive electron-beam deposition with and without ion bombardments,” Opt. Eng. 36, 3433–3438 (1997).
[CrossRef]

Shibata, S.

S. Shibata, “Dielectric constants of Ta2O5 thin films deposited by r.f. sputtering,” Thin Solid Films 277, 1–4 (1996).
[CrossRef]

Sites, J. R.

J. R. Sites, H. Demiryont, D. B. Kerwin, “Ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656 (1985).
[CrossRef]

Smajkiewicz, A.

Swain, M.

P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage, L. Wielunski, “Properties of thin films of tantalum oxide deposited by ion-assisted deposition,” Thin Solid Films 239, 181–185 (1994).
[CrossRef]

Takashashi, H.

Tsai, R.-Y.

R.-Y. Tsai, S.-C. Shiau, C.-H. Lee, F. C. Ho, M.-Y. Hua, “Properties of optical thin films and coatings prepared by reactive electron-beam deposition with and without ion bombardments,” Opt. Eng. 36, 3433–3438 (1997).
[CrossRef]

Wielunski, L.

P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage, L. Wielunski, “Properties of thin films of tantalum oxide deposited by ion-assisted deposition,” Thin Solid Films 239, 181–185 (1994).
[CrossRef]

Zoller, A.

Appl. Opt. (4)

J. Appl. Phys. (1)

G. Mohan Rao, S. Mohan, “Studies on grow-discharge characteristics during dc reactive magnetron sputtering,” J. Appl. Phys.69, 6652–6655 (1991).

J. Lightwave Technol. (1)

J. Minowa, Y. Fujii, “Dielectric multilayer thin-film filters for WDM transmission systems,” J. Lightwave Technol. LT-1, 116–121 (1983).
[CrossRef]

J. Phys. E (1)

R. Sawnepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. R. Sites, H. Demiryont, D. B. Kerwin, “Ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656 (1985).
[CrossRef]

Lightwave (1)

R. Chua, B. Cai, “Component technology enables high-capacity DWDM systems,” Lightwave (August1998), pp. 64–69.

Opt. Acta (1)

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

Opt. Eng. (1)

R.-Y. Tsai, S.-C. Shiau, C.-H. Lee, F. C. Ho, M.-Y. Hua, “Properties of optical thin films and coatings prepared by reactive electron-beam deposition with and without ion bombardments,” Opt. Eng. 36, 3433–3438 (1997).
[CrossRef]

Thin Solid Films (3)

P. J. Martin, R. P. Netterfield, “Optimization of deposition parameters in ion-assisted deposition of optical thin films,” Thin Solid Films 199, 351–358 (1991).
[CrossRef]

P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage, L. Wielunski, “Properties of thin films of tantalum oxide deposited by ion-assisted deposition,” Thin Solid Films 239, 181–185 (1994).
[CrossRef]

S. Shibata, “Dielectric constants of Ta2O5 thin films deposited by r.f. sputtering,” Thin Solid Films 277, 1–4 (1996).
[CrossRef]

Other (3)

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Macmillan, New York, 1986), pp. 244–257.

H. A. Macleod, Thin-film Optical Filters (Hilger, Bristol, UK, 1986), pp. 357–407.

M. A. Scobey, “Low pressure reactive magnetron sputtering apparatus and method,” U.S. patent5,525,199 (11June1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic view of the homemade reactive ion-assisted bipolar dc magnetron sputtering system.

Fig. 2
Fig. 2

Transmission spectra of Ta2O5 films prepared by reactive ion-assisted bipolar dc magnetron sputtering from the tantalum target with the oxygen flowing through (thick black curve) or not flowing through (thick gray curve) the ion gun and directed toward the substrate. The fine solid curve is the spectrum for bare glass substrate.

Fig. 3
Fig. 3

Transmission spectra of SiO2 films prepared by reactive ion-assisted bipolar dc magnetron sputtering from the silicon target with the oxygen flowing through (thick black curve) or not flowing through (thick gray curve) the ion gun and directed toward the substrate. The fine solid curve is the spectrum for bare glass substrate.

Fig. 4
Fig. 4

Target voltage versus the oxygen flow rate as a function of oxygen flowing through (solid curve) or not flowing through (dashed curve) the ion gun and directed to the substrate. The input powers of the sputter gun for Ta2O5 and SiO2 are kept at constants of 550 and 300 W, respectively.

Fig. 5
Fig. 5

Transmission spectra of Ta2O5 (upper) and SiO2 (lower) films prepared by reactive ion-assisted bipolar dc magnetron sputtering from tantalum and silicon targets, respectively, before (black curve) and after (gray curve) being subjected to the water-immersion test at ambient temperature for 2 h.

Fig. 6
Fig. 6

Surface topographies of Ta2O5 (upper) and SiO2 (lower) films analyzed by atomic force microscopy. Layer thicknesses of Ta2O5 and SiO2 are ∼600 and 200 nm, respectively.

Fig. 7
Fig. 7

Transmission spectra of three-cavity NB filters with high-index half-wave spacer and 78 layers of Ta2O5 and SiO2 prepared by reactive ion-assisted bipolar dc magnetron sputtering.

Fig. 8
Fig. 8

Radial distribution of the transmission spectra for 78-layer NB filters with reference wavelength of 1543.73 nm.

Fig. 9
Fig. 9

Temperature-dependent wavelength shift of 78-layer NB filter with center wavelength at 1536.53 nm.

Fig. 10
Fig. 10

Transmission spectra of three-cavity NB filters with high-index half-wave spacer and 102 layers of Ta2O5 and SiO2 prepared by reactive ion-assisted bipolar dc magnetron sputtering.

Fig. 11
Fig. 11

Surface topography of three-cavity NB filter with 102 layers of Ta2O5 and SiO2 analyzed by atomic force microscopy.

Metrics